Math, asked by shashivarnika68, 5 months ago

3(x-3)(x+4)+3(x-2)(x-4)=19(x-4)(x-3)​

Answers

Answered by MaheswariS
3

\underline{\textsf{Given:}}

\mathsf{3(x-3)(x+4)+3(x-2)(x-4)=19(x-4)(x-3)}

\underline{\textsf{To find:}}

\textsf{Roots of the given polynomial equation}

\underline{\textsf{Solution:}}

\mathsf{Consider,}

\mathsf{3(x-3)(x+4)+3(x-2)(x-4)=19(x-4)(x-3)}

\mathsf{Rearranging\;terms}

\mathsf{3(x-3)(x+4)=19(x-4)(x-3)-3(x-2)(x-4)}

\mathsf{3(x^2+x-12)=(x-4)[19(x-3)-3(x-2)]}

\mathsf{3x^2+3x-36=(x-4)[19x-57-3x+6]}

\mathsf{3x^2+3x-36=(x-4)[16x-51]}

\mathsf{3x^2+3x-36=16x^2-51x-64x+204}

\mathsf{3x^2+3x-36=16x^2-115x+204}

\mathsf{13x^2-118x+240=0}

\mathsf{13x^2-78x-40x+240=0}

\mathsf{13x(x-6)-40(x-6)=0}

\mathsf{(13x-40)(x-6)=0}

\implies\mathsf{13x-40=0\;\;(or)\;\;x-6=0}

\implies\mathsf{x=\dfrac{40}{13}\;\;(or)\;\;x=6}

\therefore\bf\mathsf{Solutions\;set\;is\;\{\dfrac{40}{13},6\}}

\underline{\textsf{Find more:}}

Using the quadratic formula to solve 5x = 6x2 – 3, what are the values of x

https://brainly.in/question/14911682

Using the quadratic formula, solve the equation a square b square x square - (4b power 4-3apower4)x-12a square b square =0

https://brainly.in/question/5074987

A(x^2 + 1) = (a^2+ 1) x, a + 0 solve by formula method​

https://brainly.in/question/16238292

Similar questions