Math, asked by nimmalasrinivas17, 3 months ago

3 x -5 y = -1 and x –y = -1 Solve the pair of equations by substitution method.

Answers

Answered by ISAlishaTripathy
4

Answer:

x=-2 and y=-1

Step-by-step explanation:

The explanation is in the above attachment.

Attachments:
Answered by DüllStâr
38

 \bf \pink{Solution:}

 \\  \\

 \sf3x  - 5y = -1... ... ... ... ... ... ... \boxed{ \sf1}

 \\  \\

 \sf{}x - y =  - 1 \: ... ... ... ... ... ... ... \boxed{ \sf2}

 \\  \\

Solving equation 1 :

 \\  \\

:  \implies \sf3x  - 5y = -1

 \\  \\

:  \implies \sf3x = -1 + 5y

 \\  \\

:  \implies \sf3x  = 5y - 1

 \\  \\

:  \implies \sf{}x  = \dfrac{5y - 1}{3}... ... ... ... \boxed{ \sf1}

 \\  \\

Now put the value of x in equation 2:

 \\  \\

 :  \implies \sf{}x - y =  - 1

 \\  \\

 :  \implies \sf{} \dfrac{5y - 1}{3}  - y =  - 1

 \\  \\

 :  \implies \sf{} \dfrac{5y - 1 - (y \times 3)}{3} =  - 1

 \\  \\

 :  \implies \sf{} \dfrac{5y - 1 -3y}{3} =  - 1

 \\  \\

 :  \implies \sf{} \dfrac{5y -3y - 1}{3} =  - 1

 \\  \\

 :  \implies \sf{} \dfrac{2y - 1}{3} =  - 1

 \\  \\

 :  \implies \sf{}2y - 1=  - 1 \times 3

 \\  \\

 :  \implies \sf{}2y - 1=  -3

 \\  \\

 :  \implies \sf{}2y =  -3 + 1

 \\  \\

 :  \implies \sf{}2y =  -2

 \\  \\

 :  \implies \sf{}y =  \dfrac{ - 2}{2}

 \\  \\

 :  \implies \sf{}y =  \dfrac{ - \cancel2}{\cancel2}

 \\  \\

 :  \implies \sf{}y =  \dfrac{ -1}{1}

 \\  \\

 :  \implies \sf{}y = - 1

 \\

 \therefore \underline{ \sf{}value \: of \: y \: is \:  \textbf{ \textsf{ - 1}}}

 \\  \\

━━━━━━━━━━━━━━━

 \\  \\

Now Let's find value of x

put value of y in Equation 1.

 \\  \\

:  \implies \sf{}x  = \dfrac{5 \times  - 1 -  1}{3}

 \\  \\

:  \implies \sf{}x  = \dfrac{ - 5 - 1}{3}

 \\  \\

:  \implies \sf{}x  = \dfrac{ - 6}{3}

 \\  \\

:  \implies \sf{}x  = \dfrac{ - (2 \times 3)}{3}

 \\  \\

:  \implies \sf{}x  = \dfrac{ - (2 \times \cancel3)}{\cancel3}

 \\  \\

:  \implies \sf{}x  = \dfrac{ - (2 \times 1)}{1}

 \\  \\

:  \implies \sf{}x  =  - 2 \times 1

 \\  \\

:  \implies \sf{}x  =  - 2

 \\  \\

 \therefore \underline{ \sf{}value \: of \: x\: is \:  \textbf{ \textsf{ - 2}}}

 \\  \\

━━━━━━━━━━━━━━━

Verification:

 \\  \\

:  \implies \sf{}x-y=-1

 \\  \\

put value of x in this equation.

 \\  \\

:  \implies \sf{-2-(-1)=-1}

 \\  \\

:  \implies \sf{}-2+1=-1

 \\  \\

:  \implies \sf{}-1=-1

 \\  \\

 \bf LHS = RHS

 \\  \\

 \bf Hence\:Verified!

 \\  \\

Similar questions