Math, asked by 1KRITIKA, 1 month ago

3/x+y+2/x-y=2 9/x+y-4/x-y=1 Solve from elimination method

Answers

Answered by dakshitav40126
0

Answer:

To find the value of x & y if,

\frac{3}{x+y} + \frac{2}{x-y} = 2

x+y

3

+

x−y

2

=2 ..(i)

&

\frac{9}{x+y} - \frac{4}{x-y} = 1

x+y

9

x−y

4

=1 ..(ii)

Solution :

Adding both the equations,.

⇒ (i) × 2 + (ii)

⇒ (\frac{3}{x+y} + \frac{2}{x-y})(2) + (\frac{9}{x+y} - \frac{4}{x-y}) = 2(2) + 1(

x+y

3

+

x−y

2

)(2)+(

x+y

9

x−y

4

)=2(2)+1

⇒ \frac{6}{x+y} + \frac{4}{x-y} + (\frac{9}{x+y} - \frac{4}{x-y}) = 5

x+y

6

+

x−y

4

+(

x+y

9

x−y

4

)=5

⇒ \frac{15}{x+y} = 5

x+y

15

=5

⇒ \frac{x + y}{15} =\frac{1}{5}

15

x+y

=

5

1

⇒ x + y =\frac{15}{5}x+y=

5

15

⇒ x + y =3x+y=3 ..(iii)

By substituting value of (iii) in (i),

We get,

⇒ \frac{3}{x+y} + \frac{2}{x-y} = 2

x+y

3

+

x−y

2

=2

⇒ \frac{3}{3} + \frac{2}{x-y} = 2

3

3

+

x−y

2

=2

⇒ 1 + \frac{2}{x-y} = 21+

x−y

2

=2

⇒ \frac{2}{x-y} = 2 - 1

x−y

2

=2−1

⇒ \frac{2}{x-y} = 1

x−y

2

=1

⇒ x-y = 2x−y=2 ...(iv)

By adding (iii) & (iv),

We get,

⇒ (iii) + (iv) ⇒ (x + y) + (x - y) = 3 + 2(x+y)+(x−y)=3+2

⇒ 2x= 52x=5

⇒ x = \frac{5}{2}x=

2

5

By subtracting (iv) from (iii),

We get,

⇒ (iii) - (iv) ⇒ (x + y) - (x - y) = 3 - 2(x+y)−(x−y)=3−2

⇒ 2y = 12y=1

⇒ y =\frac{1}{2}y=

2

1

∴ x = \frac{5}{2}x=

2

5

∴ y =\frac{1}{2}y=

2

1

Similar questions