Math, asked by namithapurshi, 6 hours ago

3/x+y+4/x-y=5,5/x+y+1/3(x-y)=2 ​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given equations are

\rm :\longmapsto\:\dfrac{3}{x + y}  + \dfrac{4}{x - y}  = 5 -  -  - (1)

and

\rm :\longmapsto\:\dfrac{5}{x + y}  + \dfrac{1}{3(x - y)}  = 2-  -  - (2)

To solve this pair of equations, Let assume that

 \red{\rm :\longmapsto\:\dfrac{1}{x + y}  = a} -  -  - (3)

and

 \red{\rm :\longmapsto\:\dfrac{1}{x  -  y}  = b} -  -  - (4)

So, equation (1) and (2) can be rewritten as

\rm :\longmapsto\:3a + 4b = 5 -  - -   - (5)

\rm :\longmapsto\:5a + \dfrac{b}{3} = 2

\rm :\longmapsto\:\dfrac{15a + b}{3} = 2

\rm :\longmapsto\:15a + b = 6 -  -  - (6)

Now, multiply equation (6) by 4, we get

\rm :\longmapsto\:60a +4 b = 24 -  -  - (7)

On Subtracting equation (5) from (7), we get

\rm :\longmapsto\:57a = 19

\sf\implies\boxed{\tt{ a \:  =  \:  \frac{1}{3} \: }} -  -  - (8)

On substituting the value of a in equation (5), we get

\rm :\longmapsto\:1 + 4b = 5

\rm :\longmapsto\:4b = 5 - 1

\rm :\longmapsto\:4b = 4

\sf\implies\boxed{\tt{  \: b \:  =  \: 1 \: }} -  -  -  - (9)

On substituting the values of a and b in equation (3) and (4), we get

\rm :\longmapsto\:x + y = 3 -  -  -  - (10)

and

\rm :\longmapsto\:x  -  y = 1-  -  -  - (11)

On adding equation (10) and (11), we get

\rm :\longmapsto\:2x = 4

\sf\implies \: x \:  =  \: 2

On substituting the value of x in equation (10), we get

\rm :\longmapsto\:2 + y = 3

\sf\implies \: y \:  =  \: 1

So, Solution of equations is

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\bf{x \:  =  \: 2}  \\ \\ &\bf{y \:  =  \: 1} \end{cases}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

VERIFICATION

Consider, Equation (1)

\rm :\longmapsto\:\dfrac{3}{x + y}  + \dfrac{4}{x - y}  = 5

On substituting the values of x and y, we get

\rm :\longmapsto\:\dfrac{3}{2 + 1}  + \dfrac{4}{2 - 1}  = 5

\rm :\longmapsto\:\dfrac{3}{3}  + \dfrac{4}{1}  = 5

\rm :\longmapsto\:1 + 4= 5

\rm :\longmapsto\:5= 5

Hence, Verified

Similar questions