Math, asked by omss36, 3 months ago

3. x2 + 2x + k = 0 If the roots of the given equation are real
and equal then find k.​

Answers

Answered by amansharma264
9

EXPLANATION.

Quadratic equation.

⇒ x² + 2x + k = 0.

As we know that,

D = Discriminant or b² - 4ac = 0.

Roots are real and equal, D = 0.

⇒ (2)² - 4(1)(k) = 0.

⇒ 4 - 4k = 0.

⇒ 4 = 4k.

⇒ k = 1.

                                                                                                                       

MORE INFORMATION.

Conjugate roots.

(1) = D < 0.

One roots = α + iβ.

Other roots = α - iβ.

(2) = D > 0.

One roots = α + √β.

Other roots = α - √β.

Answered by Anonymous
5

Answer:

Given ,

Quadratic equations

 {x}^{2}  \:  +  \: 2x \:  \:  + k \:  = 0 \\

We know that;

️‍️

D=Discriminat

or,

 {b}^{2}  \:  - 4ac = 0

Roots are real and equal

therefore, D = 0

Now,

=>

 {2}^{2}  \:  -  \: 4(1)(k) = 0

=&gt;  \: 4 - 4k \:  = 0

Step-by-step explanation:

=&gt; 4 = 4k

=&gt; k = 1

️‍️

therefore, K= 1 is the answer

Similar questions