Math, asked by ramanalaxmi47, 3 months ago

30 big anfon Ah COSA +AsinA =2seca
COSA
HSINA​

Attachments:

Answers

Answered by Anonymous
14

Solution

 \tt \implies \dfrac{cosA}{1 + sinA}  +  \dfrac{1 + sinA}{cosA}  = 2secA

Now Take

\tt \implies \dfrac{cosA}{1 + sinA}  +  \dfrac{1 + sinA}{cosA}

Taking LCM

 \tt \implies  \dfrac{(cosA)(cosA) + (1 + sinA)(1 + sinA)}{(1 + sinA)(cosA)}

 \tt \implies \:  \dfrac{cos^{2} A + (1 + sinA)^{2} }{cosA + sinAcosA}

 \tt \implies \:  \dfrac{cos^{2}A  + 1 + sin ^{2} + 2sin A}{cosA (1+ sinA)}

\tt \implies \:  \dfrac{1  + 1 + 2sin A}{cosA (1+ sinA)}

\tt \implies \:  \dfrac{2 + 2sin A}{cosA (1+ sinA)}

\tt \implies \:  \dfrac{2( 1+ sin A)}{cosA (1+ sinA)}

\tt \implies \:  \dfrac{2 \cancel{( 1+ sin A)}}{cosA  \cancel{(1+ sinA)}}

\tt \implies \:  \dfrac{2}{cosA}  = 2secA

Hence Proved


Anonymous: Nicee as always :)
Similar questions