Math, asked by aanchalshrivastav, 1 month ago

30. Diagonals AC and BD of a quadrilateral ABCD intersect each other at p. show that
Ar(APB) X Ar (CPD) = Ar (APD) X Ar (BPC)​ ( answer fast please)

Answers

Answered by pranavbaidya2020
1

Step-by-step explanation:

Data: Diagonals AC and BD of a quadrilateral ABCD intersect each other at P.

To Prove: ar.(△APB)×ar.(△CPD)=ar.(△APD)×ar.(△BPC)

Construction: Draw AM⊥DB,CN⊥DB

Proof: ar.(△APB)×ar.(△CPD)=

=(

2

1

×PB×AM)×(

2

1

×PD×CN)

=

4

1

×PB×AM×PD×CN....(i)

ar.(△APD)×ar.(△BPC)=

=(

2

1

×PD×AM)×(

2

1

×PB×CN)

=

4

1

×PD×AM×PB×CN....(ii)

From (i) and (ii)

ar.(△APB)×ar.(△CPD)=ar.(△APD)×ar.(△BPC)

Similar questions