Chemistry, asked by sk8508551, 1 month ago

30 g of urea ( M= 60 g/mol) is dissolved in 864.0 g of water. Calculate the vapour pressure of water for this solution if vapour pressure of pure water at 298 K is 23.8 mm of Hg.

A 23.55mm

B 30.35mm

C 32.55mm

D none of these​

Answers

Answered by Anonymous
6

  \sf{\underline{\underline{ \purple{ \large{Answer:}}}}} \\ \\

 \sf { \blue{A. 23.55 \: mm}} ✔️

 \\ \\ \\ \sf{\underline{\underline{ \purple{ \large{Solution:}}}}} \\ \\

  • Weight of water, w₁ = 864 g
  • Weight of urea, w₂ = 30 g
  • Molecular weight of water, m₁ = 18 g/mol
  • Molecular weight of urea, m₂ = 60 g/mol
  • Vapour pressure of pure water at 298 K is 23.8 mm of Hg.

Let vapour pressure of water be p₁.

Using Raoul's law,

 \large \bigstar {\sf { \green{ \boxed{ \gray {\sf{\dfrac{ ({p_1}^{0} - p_1)  }{{{p_1}}^{0}} =  \dfrac{n_2}{(n_1 - n_2)}  }}}}}}

 \\ \\  \sf \implies {\dfrac{ ({p_1}^{0} - p_1)  }{{{p_1}}^{0}}} \:  =  \dfrac{ \frac{w_2}{m_2} }{ \frac{w_1}{m_1} -  \frac{w_2}{m_2}  }

  \\ \sf \implies \dfrac{23.8 - p_1}{23.8}  =  \dfrac{ \frac{30}{60} }{ \frac{864}{18} -  \frac{30}{60}  }

\\ \sf \implies \dfrac{23.8 - p_1}{23.8}  =  \frac{ \frac{1}{2} }{ \frac{(8640 + 90)}{180} }

\\ \sf \implies \dfrac{23.8 - p_1}{23.8}  =  \frac{ \frac{1}{2} }{ \frac{8730}{180} }

\\ \sf \implies \dfrac{23.8 - p_1}{23.8}  =  \frac{ \frac{1}{2} }{ 48.5 }

\\ \sf \implies \dfrac{23.8 - p_1}{23.8}  =  \dfrac{1}{2}  \times  \dfrac{1}{48.5}

\\ \sf \implies \dfrac{23.8 - p_1}{23.8}  =  \dfrac{1}{97}

\\ \sf \implies \dfrac{23.8 - p_1}{23.8}  =  0.0103

\\ \sf \implies 23.8 - p_1  =  0.0103 \times 23.8

\\ \sf \implies 23.8 - p_1  =  0.2454

\\ \sf \implies 23.8  =  0.2454 +  p_1

\\ \sf \implies  p_1 = 23.8 - 0.2454

\\ \sf \implies{ \green{ \underbrace{ \boxed   {\sf{p_1 = 23.55 \: mm}}}}}

━━━━━━━━━━━━━━━━━━━━━

Similar questions