Math, asked by sakshiagrahari56, 7 months ago

30 If -5 is a root of the quadratic equation 2x2 + px - 15 = 0 and the quadratic equationp(x2 + x) + k =
O has equal roots , find the value of p and k​

Answers

Answered by MaheswariS
0

\underline{\textsf{Given:}}

\textsf{-5 is a root of the equation}\;\mathsf{2x^2+px-15=0}

\textsf{and}\;\mathsf{p(x^2+x)+k=0}\;\textsf{has equal roots}

\underline{\textsf{To find:}}

\textsf{The value of p and k}

\underline{\textsf{Solution:}}

\textsf{Let the other root of}

\mathsf{2x^2+px-15=0}\;\textsf{be 'u'}

\bf\textsf{Product of the roots:}

\mathsf{u(-5)=\dfrac{-15}{2}}

\mathsf{u=\dfrac{3}{2}}

\bf\textsf{Sum of the roots:}

\mathsf{\dfrac{3}{2}+(-5)=\dfrac{-p}{2}}

\mathsf{\dfrac{3-10}{2}=\dfrac{-p}{2}}

\mathsf{\dfrac{-7}{2}=\dfrac{-p}{2}}

\implies\boxed{\mathsf{p=7}}

\textsf{Since}\;\mathsf{px^2+px+k=0}\textsf{has equal roots, we have}

\mathsf{b^2-4ac=0}

\mathsf{p^2-4(p)(k)=0}

\mathsf{7^2-4(7)(k)=0}

\mathsf{49-28\,k=0}

\mathsf{49=28\,k}

\mathsf{k=\dfrac{49}{28}}

\implies\boxed{\mathsf{k=\dfrac{7}{4}}}

Similar questions