Math, asked by realsolutionindia, 1 year ago

30. If x=2-√3, find the value of (i) x^3+1/x^3 (ii) x^2+1/x^2​

Answers

Answered by Preeti9432
7

Answer:

Hey... here is your answer in the image.

Hope it helps! ! !

Attachments:

sh27: tori se chat
sh27: kar lo
sh27: jaan
Answered by Anonymous
4

\mathfrak{\large{\underline{\underline{Answer :-}}}}

i) x³ + 1/x³ = 52

ii) x² + 1/x² = 14

\mathfrak{\large{\underline{\underline{Explanation:-}}}}

Given :

x = 2 -  \sqrt{3}

To find :

1) {x}^{3}  +  \dfrac{1}{ {x}^{3} }  \\   \\ 2) {x}^{2} +  \dfrac{1}{ {x}^{2} }

Solution :

First find the value of 1/x

First find the value of 1/x To find the value of 1/x you need to rationalize the denominator

 \dfrac{1}{x} =  \dfrac{1}{2 -  \sqrt{3} }

The rationalising factor of 2 - √3 is 2 + √3. So, multiply the numerator and denominator with rationalising factor.

 =  \dfrac{1}{2 -  \sqrt{3} } \times  \dfrac{2 +  \sqrt{3} }{2 +  \sqrt{3} }

 =  \dfrac{2 +  \sqrt{3} }{ {2}^{2} -  {( \sqrt{3})}^{2} }

Since (x + y)(x - y) = x² - y²

 =  \dfrac{2 + \sqrt{3} }{4 - 3}

 = \dfrac{2 +  \sqrt{3} }{1}

 = 2 +  \sqrt{3}

 \dfrac{1}{x} = 2 +  \sqrt{3}

Now find the value of 1/x³

Now find the value of 1/x³ 1/x³ is nothing but (1/x)³

 {(\dfrac{1}{x})}^{3}  = {(2 +  \sqrt{3})}^{3}

 =  {2}^{3} + 3( {2}^{2})( \sqrt{3}) + 3(2){( \sqrt{3})}^{2} +  {( \sqrt{3})}^{3}

Since (x + y)³ = x³ + 3x²y + 3xy² + y³

 = 8 + 3(4)( \sqrt{3}) + 6(3) +  {( \sqrt{3})}^{2}( \sqrt{3} )

 = 8 + 12 \sqrt{3} + 18 + 3 \sqrt{3}

 = 26 + 15 \sqrt{3}

 {( \dfrac{1}{x})}^{3}  = 26 + 15 \sqrt{3}

Find the value of x³

 {x}^{3} = {(2  -  \sqrt{3})}^{3}

Since (x - y)³ = x³ - 3x²y + 3xy² - y³

 =  {2}^{3} - 3( {2}^{2})( \sqrt{3}) + 3(2){( \sqrt{3})}^{2}  -  {( \sqrt{3})}^{3}

 = 8 - 3 \sqrt{3} (4) + 6(3) -  { (\sqrt{3})}^{2}( \sqrt{3})

 = 8 - 12 \sqrt{3} + 18 - 3 \sqrt{3}

 = 26 - 15 \sqrt{3}

 {x}^{3} = 26 - 15 \sqrt{3}

Now you can find the value of x³ + 1/x³

 {x}^{3}  -   \dfrac{1}{ {x}^{3} }  = 26  - 15 \sqrt{3} + (26   +15  \sqrt{3})

 = 26  -  15 \sqrt{3} + 26  + 15 \sqrt{3}

 = 52

 {x}^{3} +  \dfrac{1}{ {x}^{3}} = 52

Now find the value of 1/x²

Now find the value of 1/x²1/x² is nothing but (1/x)²

 {(\dfrac{1}{x})}^{2}  =  {(2 +  \sqrt{3}) }^{2}

 =  {2}^{2} + 2(2)( \sqrt{3}) +  {( \sqrt{3})}^{2}

Since (x + y)² = x² + 2xy + y²

 = 4 + 4 \sqrt{3}  + 3

 = 7 + 4 \sqrt{3}

 \dfrac{1}{ {x}^{2} } = 7 + 4 \sqrt{3}

Find the value of x²

 {x}^{2}  =  {(2 -  \sqrt{3})}^{2}

 =  {2}^{2}  - 2(2)( \sqrt{3}) +  {( \sqrt{3})}^{2}

Since (x - y)² = x² - 2xy + y²

 = 4  -  4 \sqrt{3} + 3

 =7 - 4 \sqrt{3}

 {x}^{2} = 7 - 4 \sqrt{3}

Now you can find the value of x² + 1/x²

 {x}^{2} -  \dfrac{1}{ {x}^{2} } = 7 - 4 \sqrt{3} + (7  +  4 \sqrt{3})

 = 7 - 4 \sqrt{3}  + 7  +  4 \sqrt{3}

 = 7 + 7

 = 14

 {x}^{2} +  \dfrac{1}{ {x}^{2} } = 14

Similar questions