30. If x = 3, y = - 2 and 2 =-1. The value of x cube + y cube + z cube?
- 3.xyz is -
Answers
Answered by
0
Answer:
Given x+y+z=0
⟹x+y=−z
Cubing on both sides
(x+y)
3
=(−z)
3
⟹x
3
+y
3
+3x
2
y+3xy
2
=−z
3
⟹x
3
+y
3
+3xy(x+y)=−z
3
⟹x
3
+y
3
+3xy(−z)=−z
3
⟹x
3
+y
3
−3xyz=−z
3
⟹x
3
+y
3
+z
3
=3xyz
Answered by
0
Answer:
0
Step-by-step explanation:
Identity used: If x + y + z = 0, x^3 + y^3 + z^3 = 3xyz
Here:
x = 3
y = -2
z = -1
x + y + z = 0 therefore we can use this identity
To find: x^3 + y^3 + z^3 - 3xyz
= 3xyz - 3xyz
= 0
Brainliest please
Similar questions