Chemistry, asked by Anonymous, 7 months ago

30 ml gaseous mixture of methane and ethylene in volume ratio X : Y requires 350 ml air containing 20% of O2 by volume for complete combustion. If ratio of methane and ethylene changed to Y : X. What will be volume of air (in ml) required for complete reaction under similar condition of temperature and pressure.


✔ explanation should be in brief
✯no spam answers
✔answers will be deleted if,
✯irrelevant answer
✯copied
✯spammed
✯additional information required.​

_______________​​​​


Answers

Answered by AdorableMe
30

Solution :-

\sf{CH_4(g)+2O_2(g) \longrightarrow CO_2(g)+2H_2O(l)}

\sf{V_1ml}        \sf{2V_1ml}         \sf{V_1ml}            \sf{0}

\sf{C_2H_4(g)+3O_2(g) \longrightarrow 3CO_2(g)+2H_2O(l)}

\sf{V_2ml}        \sf{2V_2ml}        \sf{2V_2ml}           \sf{0}

For the given data,

\sf{V_1+V_2=30}               ... (i)

\sf{2V_1+3V_2}

\longrightarrow \sf{2V_1+3V_2=350 \times \dfrac{20}{100} }

\longrightarrow \sf{2V_1+3V_2=70}        ...(ii)

Solving equations (i) and (ii) :-

\sf{V_1=30-V_2}

\longrightarrow \sf{ 2(30-V_2)+3V_2=70 }

\longrightarrow \sf{  60-2V_2+3V_2=70}

\longrightarrow \sf{  V_2=10}

\longrightarrow \sf{  V_1=30-10}

\longrightarrow \sf{  V_1=20}

\sf{  \therefore V_1=10\:\:and\:\:V_2=20}

→ Volume of O₂ required = 2V₁ + 3V₂ = 80 ml

Volume of air required = 80 × 100/20

→ 80 × 5 = 400 ml

◘ Therefore, the answer is 400 ml.

Answered by Anonymous
19

ANSWER✔

\large\underline\bold{GIVEN,}

\dashrightarrow V_1+V_2=30\:---\boxed{1}

\dashrightarrow 2V_1+3V_2=350 \times \dfrac{20}{100}

\dashrightarrow 2V_1+3V_2=70\:---\boxed{2}

\dashrightarrow CH_4(g)+2O_2(g) \dashrightarrow CO_2(g)+2H_2O(l) \\ v_1ml,2v_1ml, v_1ml :0

\dashrightarrow C_2H_4(g)+3O_2(g) \dashrightarrow 3CO_2(g)+2H_2O(l)\\ v_2ml,2v_2ml,2v_2ml:0

\therefore solving\:1\:and\:2.we\:get,

\implies V_1=30-V_2

\implies 2(30-V_2)+3V_2=70

\implies 60-2V_2+3V_2=70

\implies V_2= 70-10

\implies V_2=10

\large{\boxed{\bf{ \star\:\: V_2=10\:\: \star}}}

\dashrightarrow V_2=10 \\ \dashrightarrow V_1=30-V_2\\ \dashrightarrow 30-10\\ \implies V_1=20

\large{\boxed{\bf{ \star\:\: V_1=20\:\: \star}}}

\therefore Volume\:of\:O_2= 2v_1+3v_2= 2(20)+3(10)= 40+30=70ml \\dashrightarrow volume\:of\:air\:= 70\times \dfrac{100}{20} \\ \implies 70\times \dfrac{\cancel{100}}{\cancel{20}} \\ \implies 70\times 5 \\ \implies 350 ml

____________

Similar questions