Math, asked by anirudhgawande480, 9 months ago

30/x-y +44/x+y =10 , 40/x-y +55/x+y =13. solve the equation ​

Answers

Answered by Aloi99
16

Given:-

 \frac{30}{x-y} + \frac{44}{x+y} =10๛(1)

 \frac{40}{x-y} + \frac{55}{x+y} =13๛(2)

\rule{200}{1}

To Find:-

→The Values of x&y?

\rule{200}{1}

AnsWer:-

Using (1)

→30( \frac{1}{x-y} )+44( \frac{1}{x+y} )=10

[๛Let  \frac{1}{x-y} =u]

[๛Let  \frac{1}{x+y} =v]

→30u+44v=10๛(3)

Using (2)

→40( \frac{1}{x-y} )+55( \frac{1}{x+y} )=13

[๛Let  \frac{1}{x-y} =u]

[๛Let  \frac{1}{x+y} =v]

→40u+55v=13๛(4)

♦Multiply eq-(3) with 4♦

•We get,

→120u+176v=40๛(5)

♦Multiply Eq-(4) with 3♦

→120u+165v=39๛(6)

ΠSubtract (5)&(6)Π

→120u+176v=40

→120u+165v=39

★Sign Changed★

→11v=1

→v= \frac{1}{11} ๛(7)

★Use (7) in (3)★

→30u+ \cancel{44} ×  \frac{1}{\cancel{11}} =10

→30u+4=10

→30u=10-4

→30u=6

→u= \frac{\cancel{6}}{\cancel{30}}

→u= \frac{1}{5} ๛(8)

♦But as  \frac{1}{x-y} =u, and  \frac{1}{x+y} =v♦

 \frac{1}{x-y} = \frac{1}{5}

★Cross Multiply★

→x-y=5๛(9)

•now,

 \frac{1}{x+y} = \frac{1}{11}

★Cross Multiply★

→x+y=11๛(10)

♦Add (9)&(10)♦

→x-y=5

→x+y=11

↑Signs Not-Changed↑

→2x=16

→x= \frac{\cancel{16}}{\cancel{2}}

→x=8๛(11)

♦Use (11) in (10)♦

→x+y=11

→8+y=11

→y=11-8

→y=3๛(12)

\rule{200}{1}

♦From (11)&(12),We know♦

★x=8

★y=3

\rule{200}{2}

Answered by Saby123
21

QUESTION :

30/x-y +44/x+y =10 , 40/x-y +55/x+y =13. solve the equation

SOLUTION :

Suppose : 1 / X - Y = b

1 / X + Y = a.

NOW

The two equations become :

44 a + 30 b = 10......(1)

40b + 55 a = 13 .........(2)

Multiplying equation 1 by 4 and equation 2 by 3 we get :

176 a + 120 b = 40

120 b + 165 a = 39.

Subracting We get :

11 a = 1

a = 1/11

Similarly

b = 1 / 5

Now :

X + Y = 11

X - Y = 5

Hence :

X = 8.......(A1)

Y = 3......(A2)

Similar questions