.
(30x - 9)/(x-2) ≥ 25(x+2)
Answers
Answered by
8
Given: The expression (30x - 9)/(x-2) ≥ 25(x+2)
To find: The value of x?
Solution:
- Now we have given the expression as:
(30x - 9)/(x-2) ≥ 25(x+2)
- Solving the equation, we get:
- Cross multiplying the denominator:
(30x - 9) ≥ 25(x+2) (x-2)
- Solving further, we get:
(30x - 9) ≥ 25(x^2 - 2^2)
(30x - 9) ≥ 25(x^2 - 4)
(30x - 9) ≥ 25x^2 - 100
0 ≥ 25x^2 - 30x - 100 + 9
25x^2 - 30x - 91 ≤ 0
- Let 25x^2 - 30x - 91 = 0
- So by middle term splitting, we get:
25x^2 - 65x + 35x - 91 = 0
5x(5x - 13) + 7(5x - 13) = 0
(5x + 7)(5x - 13) = 0
x = -7/5 or 13/5
Answer:
So the value of x is -7/5 or 13/5.
Similar questions