Physics, asked by katiyarsatish1, 2 months ago

31. A ball is thrown vertically upwards with a velocity of 56m/s. Calculate
ball is thrown vertically way
i) The maximum height at which it rises,
in) The total time it takes to return to the surface of the earth.

Answers

Answered by Anonymous
92

\dag\:\underline{\sf AnsWer :}

  • Initial Velocity (u) = 56 m/s
  • Final Velocity (v) = 0 m/s
  • Acceleration due to gravity = -10 m/s²

We are asked to find the maximum height to which it rises and the total time it takes to return to the surface of the earth.

\bigstar \: \underline{\textbf{ Maximum height to which it rises : } } \\

  • Using third kinematical equation of motion we can find the maximum height to which ball rises :

:\implies\sf v^2 - u^2 = 2gh \\  \\

:\implies\sf h = \dfrac{v^2- u^2}{2g} \\  \\

:\implies\sf h = \dfrac{(0)^2- (56)^2}{2 \times ( - 10)} \\  \\

:\implies\sf h = \dfrac{- (56)^2}{ - 20} \\  \\

:\implies\sf h = \dfrac{(56)^2}{ 20} \\  \\

:\implies\sf h = \dfrac{3136}{ 20} \\  \\

:\implies \underline{ \boxed{\frak{ h = 156.8 \: m}}} \\  \\

\therefore\:\underline{\textsf{The maximum height to which it rises is \textbf{156.8 m}}}. \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━

\bigstar \: \underline{\textbf{ Time taken : } } \\

\dashrightarrow\:\:\sf v = u + gt \\  \\

\dashrightarrow\:\:\sf v - u = gt \\  \\

\dashrightarrow\:\:\sf  \dfrac{v - u }{g}= t \\  \\

\dashrightarrow\:\:\sf t =  \dfrac{v - u }{g}\\  \\

\dashrightarrow\:\:\sf t =  \dfrac{0 - 56}{ - 10}\\  \\

\dashrightarrow\:\:\sf t =  \dfrac{ - 56 }{ - 10}\\  \\

\dashrightarrow\:\:\sf t =  \dfrac{56 }{10}\\  \\

\dashrightarrow\:\: \underline{ \boxed{\frak{ t =  5.6 \: s}}}\\  \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━

\bigstar \: \underline{\textbf{ The total time it takes to return to the surface of the earth : } } \\

\longrightarrow\:\:\textsf {Total time = Time of ascesnd + Time of descend} \\  \\

\longrightarrow\:\:\textsf {Total time = 5.6 + 5.6} \\  \\

\longrightarrow\:\: \underline{ \boxed{\frak {Total \:  time = 11.2 \: s}}} \\  \\

\therefore\:\underline{\textsf{The total time it takes to return to the surface of the earth is \textbf{ 11.2 second}}}. \\

═════════════════════════


ZzyetozWolFF: Awesome, rocking 'em!
Anonymous: Thankieesss :3
Ataraxia: Nice ^^
Anonymous: Thank youuuu ! :0
Answered by SarcasticL0ve
81

DIAGRAM:

⠀⠀⠀⠀⠀

\setlength{\unitlength}{1mm}\begin{picture}(8,2)\thicklines\multiput(9,1.5)(1,0){50}{\line(1,2){2}}\multiput(35,7)(0,4){13}{\line(0,1){2}}\put(10.5,6){\line(3,0){50}}\put(35,60){\circle*{10}}\put(37,7){\large\sf{u = 56 m/s}}\put(37,55){\large\sf{v = 0 m/s}}\put(21,61){\large\textsf{\textbf{Ball}}}\put(43,40){\line(0, - 4){28}}\put(43,35){\vector(0,4){18}} \put(24, - 3){\large\sf{$\sf g = - 9.8 m/s^2$}}\put(48,30){\large\sf{H = ?}}\end{picture}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\frak{Given} \begin{cases}  \sf Initial\:velocity\:of\:ball,\:(u) = \frak{56\:m/s}  & \\   \\ \sf Final\:velocity\:of\:ball,\:(v) = \frak{0\:m/s}&\end{cases}\\\\

{\underline{\frak{Need\:to\:find\::}}}

⠀⠀⠀⠀⠀

  • i) The maximum height at which it rises,
  • ii) The total time it takes to return to the surface of the earth.

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's consider the time taken is "t" to reach the maximum height "H".

⠀⠀⠀⠀

Now, By using the 3rd eqⁿ of motion,

⠀⠀⠀⠀

\star\:{\underline{\boxed{\frak{\purple{v^2 - u^2 = 2gH}}}}}\\\\\\ \bf{\dag}\:{\underline{\frak{Putting\:given\:values\:in\:formula,}}}\\\\\\ :\implies\sf (0)^2 - (56)^2 = 2 \times (-9.8) \times H\\\\\\ :\implies\sf 0 - 3136 = - 19.6 \times H\\\\\\ :\implies\sf - 3136 = - 19.6 H\\\\\\ :\implies\sf H = \cancel{\dfrac{- 3136}{ - 19.6}}\\\\\\ :\implies{\underline{\boxed{\frak{H = 160\:m}}}}\:\bigstar\\\\

\therefore\:{\underline{\sf{The\:maximum\:height\:at\:which\:the\:ball\:rises\:is\: {\textsf{\textbf{160\:m}}}.}}}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Again, By using 1st eqⁿ of motion,

⠀⠀⠀⠀

\star\:{\underline{\boxed{\frak{\purple{v = u + g \times t}}}}}\\\\\\ \bf{\dag}\:{\underline{\frak{By\:Putting\:given\:values\:in\:formula,}}}\\\\\\ :\implies\sf 0 = 56 + (-9.8) \times t\\\\\\ :\implies\sf 0 = 56 - 9.8t\\\\\\ :\implies\sf 9.8t = 56\\\\\\ :\implies\sf t = \cancel{\dfrac{56}{9.8}}\\\\\\ :\implies{\underline{\boxed{\frak{t = 6\:sec\:(approx.)}}}}\:\bigstar\\\\

\therefore\:{\underline{\sf{The\:total\:taken\:to\:reach\:the\:ground\:is\: (6 + 6) = {\textsf{\textbf{12\:sec}}}.}}}


Anonymous: Good !
ZzyetozWolFF: Cooool, perfect, outstanding, well explained! :O
Ataraxia: Awesome ^^
Similar questions