Science, asked by khuhsi079, 1 month ago

31. A ball is thrown vertically upwards with a velocity of 56m/s. Calculate
ball is thrown vertically way
i) The maximum height at which it rises,
in) The total time it takes to return to the surface of the earth.

Answers

Answered by hotcupid16
74

DIAGRAM:

⠀⠀⠀⠀⠀

\setlength{\unitlength}{1mm}\begin{picture}(8,2)\thicklines\multiput(9,1.5)(1,0){50}{\line(1,2){2}}\multiput(35,7)(0,4){13}{\line(0,1){2}}\put(10.5,6){\line(3,0){50}}\put(35,60){\circle*{10}}\put(37,7){\large\sf{u = 56 m/s}}\put(37,55){\large\sf{v = 0 m/s}}\put(21,61){\large\textsf{\textbf{Ball}}}\put(43,40){\line(0, - 4){28}}\put(43,35){\vector(0,4){18}} \put(24, - 3){\large\sf{$\sf g = - 9.8 m/s^2$}}\put(48,30){\large\sf{H = ?}}\end{picture}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\frak{Given} \begin{cases}  \sf Initial\:velocity\:of\:ball,\:(u) = \frak{56\:m/s}  & \\   \\ \sf Final\:velocity\:of\:ball,\:(v) = \frak{0\:m/s}&\end{cases}\\\\

{\underline{\frak{Need\:to\:find\::}}}

⠀⠀⠀⠀⠀

  • i) The maximum height at which it rises,

  • ii) The total time it takes to return to the surface of the earth.

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's consider the time taken is "t" to reach the maximum height "H".

⠀⠀⠀⠀

Now, By using the 3rd eqⁿ of motion,

⠀⠀⠀⠀

\star\:{\underline{\boxed{\frak{\purple{v^2 - u^2 = 2gH}}}}}\\\\\\ \bf{\dag}\:{\underline{\frak{Putting\:given\:values\:in\:formula,}}}\\\\\\ :\implies\sf (0)^2 - (56)^2 = 2 \times (-9.8) \times H\\\\\\ :\implies\sf 0 - 3136 = - 19.6 \times H\\\\\\ :\implies\sf - 3136 = - 19.6 H\\\\\\ :\implies\sf H = \cancel{\dfrac{- 3136}{ - 19.6}}\\\\\\ :\implies{\underline{\boxed{\frak{H = 160\:m}}}}\:\bigstar\\\\

\therefore\:{\underline{\sf{The\:maximum\:height\:at\:which\:the\:ball\:rises\:is\: {\textsf{\textbf{160\:m}}}.}}}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Again, By using 1st eqⁿ of motion,

⠀⠀⠀⠀

\star\:{\underline{\boxed{\frak{\purple{v = u + g \times t}}}}}\\\\\\ \bf{\dag}\:{\underline{\frak{By\:Putting\:given\:values\:in\:formula,}}}\\\\\\ :\implies\sf 0 = 56 + (-9.8) \times t\\\\\\ :\implies\sf 0 = 56 - 9.8t\\\\\\ :\implies\sf 9.8t = 56\\\\\\ :\implies\sf t = \cancel{\dfrac{56}{9.8}}\\\\\\ :\implies{\underline{\boxed{\frak{t = 6\:sec\:(approx.)}}}}\:\bigstar\\\\

\therefore\:{\underline{\sf{The\:total\:taken\:to\:reach\:the\:ground\:is\: (6 + 6) = {\textsf{\textbf{12\:sec}}}.}}}

Attachments:
Similar questions