31. (a) If 9 sin 0+40 cos 0 = 41, prove that 41 cos 0 = 40.
Answers
Answered by
5
Answer:
Step-by-step explanation:
Given: 9 sin θ + 40 cos θ= 41
⇒ 9sinθ = 41 – 40 cosθ …(i)
Squaring both sides, we get
⇒ 81sin2 θ = 1681+1600 cos2 θ – 2(41) (40cos θ) [∵ (a – b)2 =a2 +b2 –2ab]
⇒ 81 (1– cos2 θ) =1681+1600 cos2 θ – 3280cosθ
⇒ 81 – 81cos2 θ = 1681 +1600cos2 θ – 3280 cosθ
⇒ 1681cos2 θ –3280cos θ +1600 = 0
⇒ (41)2 cos2 θ – 2(41) (40cos θ) + (40)2 = 0
⇒ (41cos θ – 40 )2 = 0
Now, putting the value of cos θ in Eq. (i), we get
Similar questions