Math, asked by Jainish0201, 10 months ago

31. At what rate of compound interest, a sum amounts
to Rs. 672 in 2 years and to Rs. 714 in 3 years
when the interest is payable annually?
I want I maths

Answers

Answered by Anonymous
9

❏ Formula used:-

❏ Used ForMuLaS:-

➔ For Compound interest

\sf\longrightarrow\boxed{ P_c=P(1+\frac{r}{100}){}^{n\times t}}

\sf\longrightarrow\boxed{I_c=P[(1+\frac{r}{100}){}^{n\times t}-1]}

➔ For Simple interest

\sf\longrightarrow\boxed{I_s=\frac{Prt}{100}}

\sf\longrightarrow\boxed{P_s=(P+\frac{Prt}{100})}

Where ➔ • P_c= Total amount after

compound interest .

P_s= Total amount after

Simple interest .

• P= principal amount.

• t= time.

• r= rate of interest.

• n= No. of interest cycle per year .

Ex:-

➝n=1 (when compounded annually)

➝n=2 (when compounded half yearly)

➝n=4 (when compounded quarterly)

━━━━━━━━━━━━━━━━━━━━━━━

❏ Question:-

@ At what rate of compound interest, a sum amounts to Rs. 672 in 2 years and to Rs. 714 in 3 years when the interest is payable annually?

❏ Solution:-

❚❚❚ Given:

• Time( </strong><strong>t_</strong><strong>1</strong><strong> )= 2 yrs

P_</strong><strong>{</strong><strong>c_</strong><strong>1</strong><strong>}</strong><strong> = 672Rs

• Time( t_</strong><strong>2</strong><strong> )= 3 years

P_{c_</strong><strong>2</strong><strong>} = 714 Rs

• n=1 [∵ compounded only]

❚❚To Find:

  • Principal=?= P (let)
  • interest rate=?= r (let)

From the 1st part :-

  • Time( t_1 )= 2 years
  • P_{c_1} = 672Rs
  • principal= P
  • interest rate=r %

\sf\longrightarrow P_{c_1}=P(1+\frac{r}{100}){}^{n\times t_1}

\sf\longrightarrow 672=P(1+\frac{r}{100}){}^{1\times 2}

\sf\longrightarrow \boxed{672=P(1+\frac{r}{100}){}^{2}}............(i)

❍ From the 2nd part :-

  • Time( t_</strong><strong>2</strong><strong> )= 3 years
  • P_{c_</strong><strong>2</strong><strong>} = 714 Rs
  • principal= P
  • interest rate=r %

\sf\longrightarrow P_{c_2}=P(1+\frac{r}{100}){}^{n\times t_2}

\sf\longrightarrow 714=P(1+\frac{r}{100}){}^{1\times 3}

\sf\longrightarrow 714=P(1+\frac{r}{100}){}^{2+1}

\sf\longrightarrow 714=[P(1+\frac{r}{100}){}^{2}]\times(1+\frac{r}{100})

[putting the value from equation (i)]

\sf\longrightarrow 714=672\times(1+\frac{r}{100})

\sf\longrightarrow \frac{714}{672}=\frac{100+r}{100}

\sf\longrightarrow \frac{714}{672}\times100=100+r

\sf\longrightarrow 1.0625\times100=100+r

\sf\longrightarrow 106.25=100+r

\sf\longrightarrow 106.25-100=r

\sf\longrightarrow\boxed{ \large{\red{r=6.25\:\%}}}

Now, putting the value r=6.25 in equation (i);

\sf\longrightarrow 672=P(1+\frac{6.25}{100}){}^{2}

\sf\longrightarrow 672=P(\frac{106.25}{100}){}^{2}

\sf\longrightarrow 672\times(\frac{100}{106.25}){}^{2}=P

\sf\longrightarrow\boxed{\large{\red{ P=595.27\:Rs}}}

∴ Interest rate per annum is =6.25 %.

∴ The principal amount was = 595.27 Rs.

━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

#answerwithquality & #BAL

Answered by ItzCrazySam
8

❏ Some ForMuLaS:-

➔ For Compound interest

\sf\longrightarrow\boxed{ P_c=P(1+\frac{r}{100}){}^{n\times t}}

\sf\longrightarrow\boxed{I_c=P[(1+\frac{r}{100}){}^{n\times t}-1]}

➔ For Simple interest

\sf\longrightarrow\boxed{I_s=\frac{Prt}{100}}

\sf\longrightarrow\boxed{P_s=(P+\frac{Prt}{100})}

Where ➔ • P_c= Total amount after

compound interest .

P_s= Total amount after

Simple interest .

• P= principal amount.

• t= time.

• r= rate of interest.

• n= No. of interest cycle per year .

Ex:-

➝n=1 (when compounded annually)

➝n=2 (when compounded half yearly)

➝n=4 (when compounded quarterly)

━━━━━━━━━━━━━━━━━━━━━━━

❏ Solution:-

❚❚❚ Given:

• Time( t_1 )= 2 yrs

P_{c_1} = 672Rs

• Time( t_2 )= 3 years

P_{c_2} = 714 Rs

• n=1 [∵ compounded only]

❚❚❚To Find:

Principal=?= P (let)

interest rate=?= r (let)

❍ From the 1st part :-

Time( t_1 )= 2 years

P_{c_1} = 672Rs

principal= P

interest rate=r %

\sf\longrightarrow P_{c_1}=P(1+\frac{r}{100}){}^{n\times t_1}

\sf\longrightarrow 672=P(1+\frac{r}{100}){}^{1\times 2}

\sf\longrightarrow \boxed{672=P(1+\frac{r}{100}){}^{2}}............(i)

❍ From the 2nd part :-

Time( t_2 )= 3 years

P_{c_2} = 714 Rs

principal= P

interest rate=r %

\sf\longrightarrow P_{c_2}=P(1+\frac{r}{100}){}^{n\times t_2}

\sf\longrightarrow 714=P(1+\frac{r}{100}){}^{1\times 3}

\sf\longrightarrow 714=P(1+\frac{r}{100}){}^{2+1}

\sf\longrightarrow 714=[P(1+\frac{r}{100}){}^{2}]\times(1+\frac{r}{100})

[putting the value from equation (i)]

\sf\longrightarrow 714=672\times(1+\frac{r}{100})

\sf\longrightarrow \frac{714}{672}=\frac{100+r}{100}

\sf\longrightarrow \frac{714}{672}\times100=100+r

\sf\longrightarrow 1.0625\times100=100+r

\sf\longrightarrow 106.25=100+r

\sf\longrightarrow 106.25-100=r

\sf\longrightarrow\boxed{ \large{\red{r=6.25\:\%}}}

Now, putting the value r=6.25 in equation (i);

\sf\longrightarrow 672=P(1+\frac{6.25}{100}){}^{2}

\sf\longrightarrow 672=P(\frac{106.25}{100}){}^{2}

\sf\longrightarrow 672\times(\frac{100}{106.25}){}^{2}=P

\sf\longrightarrow\boxed{\large{\red{ P=595.27\:Rs}}}

∴ Interest rate per annum is =6.25 %.

∴ The principal amount was = 595.27 Rs.

━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathbb{hope \: this \: helps \: you}}

Similar questions