Math, asked by Harshitkotiya, 11 months ago

31
B. Prove that (1+cosπ/8) (1+cos3π/8) (1+cos5π/8) (1+cos7π/8) =1/8

Answers

Answered by Swarup1998
6

Proof:

Let us derive each of the factor terms in its simplest form before we procced to the proof.

• 1 + cos(π/8)

• 1 + cos(3π/8)

= 1 + cos(π/2 - π/8)

= 1 + sin(π/8)

• 1 + cos(5π/8)

= 1 + cos(π/2 + 5π/8)

= 1 - sin(π/8)

• 1 + cos(7π/8)

= 1 + cos(π - π/8)

= 1 - cos(π/8)

Now, L.H.S.

= {1 + cos(π/8)} {1 + cos(3π/8)} {1 + cos(5π/8)} {1 + cos(7π/8)}

= {1 + cos(π/8)} {1 + sin(π/8)} {1 - sin(π/8)} {1 - sin(π/8)}

= {1 - cos²(π/8)} {1 - sin²(π/8)}

= sin²(π/8) cos²(π/8)

= 1/4 * {2 sin(π/8) cos(π/8)}²

= 1/4 * sin²(2 * π/8)

= 1/4 * sin²(π/4)

= 1/4 * (1/√2)²

= 1/4 * 1/2

= 1/8

= R.H.S.

Hence, proved.

Answered by babundrachoubay123
3

L.H.S = R.H.S

Step-by-step explanation:

In this qyestion

We have given that

(1 + cos[\frac{\pi}{8}])(1 + cos[\frac{3\pi}{8}])(1 + cos[\frac{5\pi}{8}])(1 + cos[\frac{7\pi}{8}]) = \frac{1}{8}

Let L.H.S

(1 + cos[\frac{\pi}{8}])(1 + cos[\frac{3\pi}{8}])(1 + cos[\frac{5\pi}{8}])(1 + cos[\frac{7\pi}{8}])

(1 + cos[\frac{\pi}{8}])(1 + cos[\frac{\pi}{2} - \frac{\pi}{8}])(1 + cos[\frac{\pi}{2} + \frac{\pi}{8}])(1 + cos[\pi - \frac{\pi}{8}])

(1 + cos[\frac{\pi}{8}])(1 + sin[\frac{\pi}{8}])(1 - sin[\frac{\pi}{8}])(1 - cos[\frac{\pi}{8}])

1 - cos^2[\frac{\pi}{8}])(1 - sin^2[\frac{\pi}{8}])

sin^{2}\frac{\pi}{8}\times cos^{2}(\frac{\pi}{8})  

\frac{1}{4}[(2sin\frac{\pi}{8})\times cos\frac{\pi}{8}]^2

\frac{1}{4}sin^2\frac{2\pi}{8}

\frac{1}{4}sin^2\frac{\pi}{4}

[tex]\frac{1}{4}\times [\frac{1}{\sqrt{2}}]^2

[tex]\frac{1}{8}[/frac]

R.H.S

Hense, L.H.S = R.H.S

Similar questions