Math, asked by aneetasetia, 7 months ago

31) Find the coordinate of the point which divides the line segment joining the

points A(4, -3) and B(9, 7) in the ratio 3:2​

Answers

Answered by Anonymous
21

SOLUTION:-

 \sf  \red{The \:  end  \: points  \: of \:  AB  \: are \: A(4,3) \: and \: B(9,7)} \\

 \sf \: Fig:- \\  \sf \color{aqua}A•━━━━━━━|━━•B \\  \sf \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  P(x,y) \\

 \sf \therefore (x_1=4,y_1=-3) \: and \: (x_2=9,y_2=7) \\  \\

 \sf \: Also,m=3  \: and \: n=2 \\  \\

 \sf \green{ •Let \: the \: required \: point  \: be \: P(x,y).} \\  \\

 \sf \orange{ •By  \: section  \: formula  \: we \: have \: } \\

 \sf  \:  \:  \: x= \frac{(mx_2+nx_1)}{(m+n)} ,y= \frac{(my_2+ny_1)}{(m+n)}  \\  \\

 \sf ::\implies x= \frac{(3 \times 9 + 2 \times 4)}{(3+2)} ,y= \frac{ \{3×7+2(-3) \}}{(3+2)}  \\  \\

 \sf:: \implies x=7,y=3 \\  \\

 \sf \blue{Hence,the  \: required \: point \: is \: P(7,3)} \\  \\

Similar questions