31. Find the three numbers in GP whose sum is 39 and their product is 729.
Answers
Answered by
0
Answer:
39 = ar + ar^2 + ar^3
729 = (ar) * (ar^2) * (ar^3)
729 = (ar) * (ar^2) * (ar^3)
729 = (ar)^3 * r^3
9^3 = (ar)^3 * r^3
9 = ar * r
9 = ar^2
39 = ar + ar^2 + ar^3
39 = ar^2 / r + ar^2 + ar^2 * r
39 = 9/r + 9 + 9r
13 = 3/r + 3 + 3r
13r = 3 + 3r + 3r^2
0 = 3 - 10r + 3r^2
r = (10 +/- sqrt(100 - 36)) / 6
r = (10 +/- 8) / 6
r = 18/6 , 2/6
r = 3 , 1/3
ar^2 = 9
a * 3^2 , a * (1/3)^2 = 9
a * 9 , a * (1/9) = 9
a = 1 , 81
If r = 3, then:
ar , ar^2 , ar^3 =>
1 * 3 , 1 * 3^2 , 1 * 3^3 =>
3 , 9 , 27
If r = 1/3, then:
ar , ar^2 + ar^3 =>
81 / 3 , 81 / 9 , 81 / 27 =>
27 , 9 , 3
Either way, the 3 numbers are 3 , 9 , and 27.
Please mark my answer as BRAINLIEST...
Similar questions