31. How many numbers are there between 200 and 300 which are divisible by 13?
explain step by step
Answers
Answered by
0
Answer:
Step-by-step explanation:
Here the first term between 200 and 300 divisible by 13 is 208. So the first term, a= 208 and the common difference between two consecutive terms is 13.
Last term between 200 and 300 which is divisible by 13 is 299. So the last term, Tn is 299.
We know that Tn = a+((n-1)*d) where d is the common difference and n is the number of elements.
So. Tn = 299 = 208+((n-1)*13)
299–208 = 91 = (n-1) *13
91/13 = 7 = n-1
Therefore, n= 7+1 = 8.
Answered by
0
Answer:
6 numbers are divisible by 13 between 200 and 300
Similar questions