Math, asked by kumarsanjay18313, 3 months ago

31. In Fig 7.41, ABCD is a parallelogram in which Eis
the point on BC. On producing DE and AB meets at
F. If AF=2AB, prove that E is the mid-point of BC.

Answers

Answered by mathdude500
1

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &amp;\sf{ ABCD  \: is \:  a  \: parallelogram} \\ &amp;\sf{DE \:  and \:  AB \:  meets \:  at \: </p><p>F.}\\ &amp;\sf{E \: is \: </p><p>the  \: point  \: on  \: BC}\\ &amp;\sf{AF \: = \: 2AB} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  prove :-  \begin{cases} &amp;\sf{E \:  is \:  the \:  mid-point  \: of  \: BC.}  \end{cases}\end{gathered}\end{gathered}

Proof :-

\tt \:  Since \:  ABCD  \: is  \: a \:  parallelogram. \:  \:  \:  \:  \:  \\ \tt \:  </u></p><p><u>[tex]\tt \:  Since \:  ABCD  \: is  \: a \:  parallelogram. \:  \:  \:  \:  \:  \\ \tt \:  We \:  know, \:  opposite \:  sides \:  are \:  equal \\ \tt \:  ⟼ \: </u></p><p><u>[tex]\tt \:  Since \:  ABCD  \: is  \: a \:  parallelogram. \:  \:  \:  \:  \:  \\ \tt \:  We \:  know, \:  opposite \:  sides \:  are \:  equal \\ \tt \:  ⟼ \: Therefore,  \: AB  \: = CD - -  - -(1)

\tt \:  ⟼Now, AF = 2AB  \:\: \:  \:  \:  \:  \\ </u></p><p><u>[tex]\tt \:  ⟼Now, AF = 2AB  \:\: \:  \:  \:  \:  \\ \tt \:  :⟹  \:  AB + BF = 2AB \:  \:  \:  \:  \:  \\ \tt \:  </u></p><p><u>[tex]\tt \:  ⟼Now, AF = 2AB  \:\: \:  \:  \:  \:  \\ \tt \:  :⟹  \:  AB + BF = 2AB \:  \:  \:  \:  \:  \\ \tt \:  :⟹  \ BF = 2AB - AB \:  \:  \:  \:  \:  \:  \\ \tt \:  </u></p><p><u>[tex]\tt \:  ⟼Now, AF = 2AB  \:\: \:  \:  \:  \:  \\ \tt \:  :⟹  \:  AB + BF = 2AB \:  \:  \:  \:  \:  \\ \tt \:  :⟹  \ BF = 2AB - AB \:  \:  \:  \:  \:  \:  \\ \tt \:  :⟹ BF = AB -  --(2) \\

\tt \:  ⟼ From \:  (1)  \: and  \: (2),  \: we \:  conclude \:  that

\tt \:  ⟼ \:  BF = CD ---(3)

\tt \:  ⟼Now,  \: In  \:  \triangle  \: CDE  \: and  \:  \triangle  \: EBF

\tt \:  ⟼ ∠CED = ∠BEF --(Vertically \:  opposite  \: angles) \\\tt \:   </u></p><p><u>[tex]\tt \:  ⟼ ∠CED = ∠BEF --(Vertically \:  opposite  \: angles) \\\tt \:   ⟼ ∠ECD = ∠EBF --(Alternate \:  interior \:  angles ) \\ \tt \: </u></p><p><u>[tex]\tt \:  ⟼ ∠CED = ∠BEF --(Vertically \:  opposite  \: angles) \\\tt \:   ⟼ ∠ECD = ∠EBF --(Alternate \:  interior \:  angles ) \\ \tt \: ⟼ BF = AB --(Proved above (3))  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \tt \:  ⟼∆CDE ≅ ∆BFE ---(SAS  \: Congruency \:  Rule) \:  \:  \:  \:  \:  \:

\tt \:  :⟹  CE = BE ----- (CPCT) \\ \tt \:  </u></p><p><u>[tex]\tt \:  :⟹  CE = BE ----- (CPCT) \\ \tt \:  :⟹  E  \: is  \: the \:  midpoint \:  of \:  BC. \:  \:  \:  \:

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

Attachments:
Similar questions