Math, asked by DevilSingh15, 4 months ago

31. Prove that sin theta (1 + tan theta) + cos theta (1 + cot theta) = sec theta + cosec theta

Answers

Answered by EnchantedGirl
11

★To prove:-

  • Sinθ(1 + Tanθ) + Cosθ(1 + Cotθ) = Secθ  + Cosecθ

\\

★Proof:-

\\

LHS:Sinθ(1 + Tanθ) + Cosθ(1 + Cotθ)......(1)

We know:

\leadsto \underline{\boxed{\sf tan\theta = \dfrac{sin\theta }{cos\theta }}}

\leadsto \underline{\boxed{\sf cot\theta = \dfrac{cos\theta }{sin\theta } }}

Putting these in equation (1),

\displaystyle :\implies \sf sin\theta (1+\frac{sin\theta }{cos\theta} )+cos\theta (1+\frac{cos\theta }{sin\theta } )\\\\\\:\implies \sf sin\theta (\frac{cos\theta +sin\theta }{cos\theta} )+cos\theta (\frac{sin\theta +cos\theta }{sin\theta } )\\\\\\:\implies \sf \frac{sin\theta }{cos\theta } (sin\theta +cos\theta ) + \frac{cos\theta }{sin\theta} (sin\theta +cos\theta )\\\\\\:\implies \sf (sin\theta +cos\theta )(\frac{sin\theta }{cos\theta } + \frac{cos\theta }{sin\theta } )\\\\\\

\displaystyle :\implies \sf (sin\theta +cos\theta )(\frac{sin^2\theta +cos^2\theta )}{cos\theta sin\theta } )\\\\

Using the formula,

\leadsto \underline{\boxed{\sf sin^2\theta +cos^2\theta = 1}}\\\\

\displaystyle :\implies \sf (sin\theta +cos\theta )(\frac{1}{cos\theta sin\theta } )\\\\\\:\implies \sf \frac{cos\theta +sin\theta }{cos\theta sin\theta } \\\\\\:\implies \sf \frac{\cancel{cos\theta }}{\cancel{cos\theta }sin\theta } +\frac{\cancel{sin\theta }}{cos\theta \cancel{sin\theta }} \\\\\\:\implies \sf \frac{1}{sin\theta } +\frac{1}{cos\theta } \\\\

Using the formula's:-

\leadsto \underline{\boxed{\sf cosec\theta = \frac{1}{sin\theta } }}\\\\\leadsto \underline{\boxed{\sf sec\theta = \frac{1}{cos\theta } }}\\\\

Therefore,

\mapsto \boxed{\boxed{\sf cosec\theta + sec\theta }}\\

Hence proved !

_____________

Similar questions