Math, asked by parthdung9, 3 months ago

31 question DX upon x-1 under root x squarec+ 4​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \int \frac{dx}{(x - 1) \sqrt{ {x}^{2} + 4 } }  \\

 let \:  \: x = 2 \tan( \alpha )   \\  \implies \: dx = 2 \sec^{2} ( \alpha ) d \alpha

 =  \int \frac{2 \sec^{2} ( \alpha )d \alpha  }{(2 \tan( \alpha )  - 1).2 \sec( \alpha ) }  \\

 =  \int \frac{ \sec( \alpha )d \alpha  }{2 \tan( \alpha )  - 1 }  \\

 =  \int \frac{d  \alpha }{2 \sin( \alpha ) -   \cos( \alpha ) } \\

 =  \int \frac{d \alpha }{ \frac{4 \tan( \frac{ \alpha }{2} ) }{1 +  \tan^{2} ( \frac{ \alpha }{2} ) }  -  \frac{1 -  \tan^{2} ( \frac{ \alpha }{2} ) }{1 +  \tan^{2} ( \frac{ \alpha }{2} ) } }  \\

 =  \int \frac{ \sec^{2} ( \frac{ \alpha }{2} ) d \alpha }{ \tan^{2} ( \frac{ \alpha }{2} ) + 4 \tan( \frac{ \alpha }{2} )  - 1 }  \\

let \:  \:  \tan( \frac{ \alpha }{2} )  = t \\  \implies \sec^{2} ( \frac{ \alpha }{2} ) d \alpha   = 2dt

 =  \int \frac{2dt}{ {t}^{2}  + 4t - 1}  \\

 = 2 \int \frac{dt}{ {t}^{2} + 4t + 4 - 5 }  \\

 = 2 \int \frac{dt}{(t + 2)^{2} - ( \sqrt{5})^{2}   }  \\

 = 2( \frac{1}{2 \sqrt{5} }  ln |\frac{t + 2 -  \sqrt{5} }{t + 2 +  \sqrt{5} }| ) + c \\

 =  \frac{1}{ \sqrt{5} }  ln | \frac{ \tan( \frac{ \alpha }{2} ) + 2 -  \sqrt{5}  }{ \tan( \frac{ \alpha }{2} ) + 2 +  \sqrt{5}  } |  + c \\

 =  \frac{1}{ \sqrt{5} }  ln | \frac{ \tan( \frac{ 1 }{2} \tan^{ - 1} ( \frac{x}{2} )  ) + 2 -  \sqrt{5}  }{ \tan( \frac{ 1 }{2} \tan^{ - 1} ( \frac{x}{2} )   ) + 2 +  \sqrt{5}  } |  + c \\

Similar questions