Math, asked by amitell, 11 months ago

(311
1. The sum of the digits of a two digit number is 7.If the digits are reversed the new number
increased by 3 equals 4 times the original number. Find the original number.​

Answers

Answered by Anonymous
1

Step-by-step explanation:

FRIEND THIS IS NOT ANSWER OF THE YOUR QUESTION PLEASE TRY TO UNDERSTAND.

PLEASE MARK ME AS BRAINLIST BECAUSE I WANT TO ENTER EXPERT RANK.

I NEED ONLY 1 BRAINLIST ANSWER TO ENTER.

I AM GIVING ANSWERS TO MEMBERS BUT THEY ARE THANKING ME NOT MARKING AS BRAINLIST.

NO ONE IS UNDERSTANDING MY SITUATION.

PLEASE HELP AND SUPPORT ME FOR EXPERT AND MARK ME AS BRAINLIST ITS IMPORTANT .

I AM TIRED BY GIVING SO MUCH ANSWERS AND THEY ARE NOT SUPPORTING ME

PLEASE UNDERSTAND

Answered by Anonymous
1

Let x be the digit at ten's place and y be the digit at unit place.

 \sf \therefore \: The  \: number \:  =  \: 10 \: x + y

 \sf \: Sum  \: of  \: its  \: digits = x + y

 \sf \: On \:  reversing \:  the  \: digits,

 \sf \: The \:  number \:  becomes  \: 10  \: y + x.

 \sf \: A/Q, \\   \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x + y =  7  \\  \sf \: and,  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:   \:  \: 10y + x + 3 = 4(10x + y) \\  \\  \sf \red{x + y = 7 }\:  \:  \:   \:  \:   \\  \sf \: 10y + x + 3 = 4(10x + y) \\  \sf \implies \: 10y + x + 3 = 40x + 4y \\  \sf \implies \: 10y - 4y + x - 40x = 3 \\  \sf \implies \red{6y - 39x = 3} \:  \:  \:  \:  \blue{} \\  \\  \\ \sf \: x + y = 7 \:  \:   \red{\times 6} \\   \sf  \: 6x + 6y = 42 \:  \:  \:  \:  \blue{eq.(i)}\\ \\  \sf \: 6y - 39x = 3 \:  \:  \red{ \times 1} \\   \sf \: 6y - 39x = 3 \:  \:  \blue{...eq.(ii)} \\  \\  \sf \: on \: solving \: we \: get \:  -  \\  \sf \: x = 1 \:  \:  \:  \:  \:  \:  \: \: y = 6 \\  \\  \sf \therefore \: Required  \: number = 10x + y  \\  \sf \:  =  \: 10 \times 1 + 6 \\   \boxed{ \red{ \underline{ \sf \: =  16 \:  \: ....(ans) }}}

Similar questions