Physics, asked by annanyasharma, 9 months ago

32) 10 A current is passing through a very long wire of radius 5 cm. Then magnetic
field at a distance of 2 cm inside from its curved surface is_________×10^-5 T
(A) 2.4 x 10^-5
(B) 6.7 x 10^-5
(C) 2.4 × 10^5
(D) 2.4​

Answers

Answered by nirman95
12

Given:

10 A current is passing through a very long wire of radius 5 cm.

To find:

magnetic field at a distance of 2 cm inside from its curved surface

Calculation:

Applying Ampere Circutal Law;

 \displaystyle \:  \int B \: . \: dl =   \mu_{0}i

 =  >  \displaystyle \:B   \int  \: dl =   \mu_{0}i

 =  >  \displaystyle \:B   (2\pi r) =   \mu_{0} \bigg( \frac{I}{\pi {R}^{2} }  \times \pi {r}^{2}  \bigg)

 =  >  \displaystyle \:B   =    \dfrac{\mu_{0}}{2\pi} \bigg( \frac{I}{\pi {R}^{2}r }  \times \pi {r}^{2}  \bigg)

 =  >  \displaystyle \:B   =    \dfrac{\mu_{0}}{2\pi} \bigg( \frac{I}{\pi {R}^{2} }  \times \pi r \bigg)

 =  >  \displaystyle \:B   =    \dfrac{\mu_{0}}{4\pi} \bigg( \frac{2I}{\pi {R}^{2} }  \times \pi r \bigg)

 =  >  \displaystyle \:B   =    \dfrac{\mu_{0}}{4\pi} \bigg( \frac{2I}{ {R}^{2} }  \times  r \bigg)

Putting available values:

 =  >  \displaystyle \:B   =     {10}^{ - 7}   \times \bigg \{ \frac{2 \times 10}{ {(0.05)}^{2} }  \times  (0.05 - 0.02) \bigg \}

 =  >  \displaystyle \:B   =     {10}^{ - 7}   \times \bigg \{ \frac{6 \times 10}{ {(0.05)}^{2} }   \bigg \}

 =  >  \displaystyle \:B   =     {10}^{ - 7}   \times \bigg \{ \frac{6 \times 10}{ 25 \times  {10}^{ - 4}  } \times  {10}^{ - 2}    \bigg \}

 =  >  \displaystyle \:B   =    \frac{60}{25} \times    {10}^{ - 5}    \: tesla

 =  >  \displaystyle \:B   =    2.4 \times    {10}^{ - 5}    \: tesla

So, final answer is:

 \boxed{ \sf{ \red{  \displaystyle \:B   =    2.4 \times    {10}^{ - 5}    \: tesla}}}

Answered by 749npg2cvp
0

Answer:2.4

Explanation:

Similar questions