Math, asked by mahakbaba2000, 1 year ago

((32)^2/5(4)^-1/2(8)^1/3)/(2^-2/(64)^-1/3)

Answers

Answered by amitnrw
14

Given :  (( 32)^(2/5) * 4^(-1/2)(8)^(1/3)) /(2⁻²/(64)^(-1/3))

To Find : Simplify

Solution :

 (( 32)^(2/5) * 4^(-1/2)(8)^(1/3)) /(2⁻²/(64)^(-1/3))

32 = 2⁵

32^(2/5)  =   (2⁵)^(2/5) =  2²  = 4

4^(-1/2) =(2²)^(-1/2)   =2⁻¹ = 1/2

8 = 2³

(8)^(1/3) = (2³)^(1/3) = 2¹ = 2

 (( 32)^(2/5) * 4^(-1/2)(8)^(1/3))

= 4 (1/2) 2

= 4

64 = 4³

=> (64)^(-1/3) = ( 4³)(-1/3) = 4⁻¹

2⁻² = 4⁻¹

4⁻¹ / 4⁻¹ = 1

2⁻²/(64)^(-1/3))  = 1

( (32)^(2/5) * 4⁻¹ - (1/2)(8)^(1/3)) /(2⁻²/(64)^(-1/3))

=4/1

= 4

 (( 32)^(2/5) * 4^(-1/2)(8)^(1/3)) /(2⁻²/(64)^(-1/3))  = 4

Learn More:

Simplify (x³-y³)³+(y³-z³)

https://brainly.in/question/10505873

(y¹² ÷ y⁸) ÷ y³ : Simplify. - Brainly.in

https://brainly.in/question/5028494

(1×61/64)-⅔ simplify​ - Brainly.in

https://brainly.in/question/10417730

Answered by Anonymous
36

  \huge\underline {\sf \green{Answer -}}

  \sf{ {32}^{ \frac{2}{5} } } \times  {4}^{ \frac{ - 1}{2} }  \times  {8}^{ \frac{1}{3} } ( \frac{ {2}^{ - 2} }{ {64}^{ \frac{ - 1}{3} } } ) \\ \\

 \sf \implies{( { {2}^{5} )}^{ \frac{2}{5} }  } \times (  { {2}^{2} )}^{ \frac{ - 1}{2} }  \times ( { {2}^{3}) }^{ \frac{1}{3} }  \times ( \frac{ {2}^{ - 2} }{ ( {4}^{3} )^{  - \frac {1}{3} } } ) \\  \\  \sf \implies{{( { {2}^{ \cancel 5} )}^{ \frac{2}{ \cancel5} }  } \times (  { {2}^{ \cancel2} )}^{ \frac{ - 1}{ \cancel2} }  \times ( { {2}^{ \cancel3}) }^{ \frac{1}{ \cancel3} }  \times ( \frac{ {2}^{ - 2} }{ ( {4}^{ \cancel 3}  ) ^{  - \frac {1}{ \cancel3} } } )} \\  \\  \sf \implies{ {2}^{2}  \times  {2}^{ - 1}  \times  {2}^{1}  \times  \frac{ {2}^{ - 2} }{ {4}^{ - 1} } } \\  \\  \sf \implies{ {2}^{2} \times  \frac{1}{ {2}^{1} }   \times 2 \times  \frac{ \frac{1}{ {2}^{2} } }{ \frac{1}{ {4}^{1} } } } \\  \\  \sf \implies{4 \times  \frac{1}{2} \times 2 \times  \frac{ \frac{1}{ 4} }{ \frac{1}{ {4}} }  } \\  \\  \sf \implies{4 \times  \frac{1}{ \cancel2} \times  \cancel2 \times  \frac{ \frac{1}{  \cancel4} }{ \frac{1}{ { \cancel4}} } } \\  \\  \sf {\red{ \implies \star \:  \:  {4} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ....ans}}

Similar questions