(✓32-√5)^1/3(√32+√5)^1/3
Answers
Answer:
\red { ( \sqrt{32} - \sqrt{5} )^{\frac{1}{3}} \times ( \sqrt{32} + \sqrt{5} )^{\frac{1}{3}} }
= \Big(( \sqrt{32} - \sqrt{5} )( \sqrt{32} + \sqrt{5} )\Big)^{\frac{1}{3}}
\blue { We\:are \:using \: following \: formulae :}
\pink {i)a^{m} \times b^{m} = (ab)^{m} }
\pink {ii) (a^{m})^{n} = a^{m \times n }}\\\pink { iii) (a + b )(a - b) = a^{2} - b^{2} }
= [ (\sqrt{32})^{2} - (\sqrt{5})^{2})^{\frac{1}{3}}
= ( 32 - 5 )^{\frac{1}{3}} \\= 27^{\frac{1}{3}}\\= (3^{3})^{\frac{1}{3}} \\= (3)^{3 \times \frac{1}{3}} \\= 3
Answer:
Given: The term (√32-√5)^1/3 x (√32+√5)^1/3
To find: The product of the above term
Solution:
So we have provided with the term:
(√32-√5)^1/3 x (√32+√5)^1/3
Now by using the formula: a^m x b^m = (ab)^m
So applying this formula, we get:
{ (√32-√5) x (√32+√5) }^1/3
Now by using the formula: (a - b)(a + b) = a^2 - b^2
So applying this formula, we get:
{ (√32)²-(√5)² }^1/3
Now solving this we get:
{ 32 - 5 }^1/3
{ 27 }^1/3
Now cubic root of 27 is 3, so:
{ 3^3 }^1/3 = 3
Answer:
So the product of (√32-√5)^1/3 x (√32+√5)^1/3 is 3.
I HOPE IT HELP YOU PLEASE MARK AS BRAILIANT AND FOLLOW ME.