Math, asked by kalathiyaherry07, 1 day ago

3²+7²+11²+...+ n terms

Answers

Answered by mathdude500
6

 \green{\large\underline{\sf{Solution-}}}

Given series is

\rm :\longmapsto\: {3}^{2} +  {7}^{2} +  {11}^{2} +  -  -  - n \: terms

Now, 3, 7, 11, forms an AP series, with first term 3 and common difference 4. So nth term of series is

\rm :\longmapsto\:T_n =  {\bigg[3 + (n - 1)4\bigg]}^{2}

\rm :\longmapsto\:T_n =  {\bigg[3 + 4n - 4\bigg]}^{2}

\rm :\longmapsto\:T_n =  {\bigg[4n - 1\bigg]}^{2}

\rm :\longmapsto\:T_n =  {16n}^{2} + 1 - 8n

Now, We know that

\rm :\longmapsto\:S_n = \displaystyle\sum_{n=1}^n  \: T_n

\rm \:  =  \: \displaystyle\sum_{n=1}^n  \: \bigg[ {16n}^{2} - 8n + 1 \bigg]

\rm \:  =  \: 16\displaystyle\sum_{n=1}^n  {n}^{2} - 8\displaystyle\sum_{n=1}^n n + \displaystyle\sum_{n=1}^n 1

\rm \:  =  \: \dfrac{16n(n + 1)(2n + 1)}{6}  - \dfrac{8n(n + 1)}{2}  + n

\rm \:  =  \: \dfrac{8n(n + 1)(2n + 1)}{3}  - 4n(n + 1)  + n

\rm \:  =  \: n\bigg[\dfrac{8(n + 1)(2n + 1)}{3}  - 4n - 4 + 1\bigg]

\rm \:  =  \: n\bigg[\dfrac{8(n + 1)(2n + 1)}{3}  - 4n - 3\bigg]

\rm \:  =  \: n\bigg[\dfrac{8( {2n}^{2} + n + 2n + 1) - 12n - 9}{3}\bigg]

\rm \:  =  \: n\bigg[\dfrac{8( {2n}^{2}  + 3n + 1) - 12n - 9}{3}\bigg]

\rm \:  =  \: n\bigg[\dfrac{{16n}^{2}  + 24n + 8- 12n - 9}{3}\bigg]

\rm \:  =  \: n\bigg[\dfrac{{16n}^{2}  + 12n - 1}{3}\bigg]

Hence,

\boxed{\tt{{3}^{2} +  {7}^{2} +  {11}^{2} +  -  -  - n \: terms =  \frac{n( {16n}^{2} + 12n - 1 )}{3}  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\boxed{\tt{ \displaystyle\sum_{n=1}^n 1 = n \: }}

\boxed{\tt{ \displaystyle\sum_{n=1}^n n =  \frac{n(n + 1)}{2}  \: }}

\boxed{\tt{ \displaystyle\sum_{n=1}^n  {n}^{2}  =  \frac{n(n + 1)(2n + 1)}{6}  \: }}

\boxed{\tt{ \displaystyle\sum_{n=1}^n  {n}^{3}  =   {\bigg[\dfrac{n(n + 1)}{2} \bigg]}^{2}   \: }}

Answered by jaswasri2006
3

Given :

series

3² + 7² + 11² …+ n terms

 \\  \\

To find :

Sum of the series

 \\  \\

Solution :

n th terms of the given series

Tⁿ = [3 + (n - 1)4]²

= 16n² - 8n + 1

Sⁿ = ∑(16n² - 8n + 1)

= 16∑n² - 8∑n + ∑1

 \sf= 16 \lgroup \frac{n(n + 1)(2n + 1)}{6}  \rgroup - 8 \lgroup \frac{n(n + 1)}{2}  \rgroup + n

 \sf =  \frac{8}{3} n(n + 1)(2n + 1) - 4[n(n + 1)] + n

= (4/3)n(n+1)(4n-1) + n

 \\

-----------------------------------------------------------------

The Required answer is

= (4/3)n(n+1)(4n-1) + n

Similar questions