Math, asked by prashantdav1350, 9 months ago

32. A rhombus-shaped sheet with perimeter 40 cm and one diagonal
12 cm, is painted on both sides at the rate of 5 per cm. Find the cost of
painting

Answers

Answered by Anonymous
128

AnswEr :

Rs.960.

\bf{\green{\underline{\underline{\bf{Given\::}}}}}

A rhombus - shaped sheet with perimeter 40 cm and one diagonal 12 cm is painted on both sides at the rate of Rs.5/cm.

\bf{\green{\underline{\underline{\bf{To\:find\::}}}}}

The cost of painting.

\bf{\green{\underline{\underline{\bf{Explanation\::}}}}}

We know that all sides of rhombus are equal length.

Let the ABCD be a rhombus each side be r

\bf{We\:have}\begin{cases}\sf{Perimeter\:of\:rhombus=40\:cm}\\ \sf{One\:diagonal\:of\:rhombus\:(d_{1})=12\:cm}\\ \sf{Rate\:=\:Rs.5/cm}\end{cases}

A/q

\bf{\large{\purple{Perimeter\:of\:rhombus\:=4\times side}}}}}

\leadsto\sf{40=4\times r}\\\\\\\leadsto\sf{r=\cancel{\dfrac{40}{4} }}\\\\\\\leadsto\sf{\red{r\:=\:10\:cm}}

\bf{\underline{\underline{\bf{Using\:Heron's\:Formula\::}}}}}

\bf{We\:get\:In\:\triangle ABC}\begin{cases}\sf{a=AB=10\:cm}\\ \sf{b=BC=10\:cm}\\ \sf{c=AC=12\:cm}\end{cases}

\mapsto\tt{Semi-perimeter\:(S)=\dfrac{a+b+c}{2} }\\\\\\\mapsto\tt{Semi-perimeter=\dfrac{10+10+12}{2} }\\\\\\\mapsto\tt{Sem-perimeter=\cancel{\dfrac{32}{2} }}\\\\\\\mapsto\tt{\red{Semi-perimeter=16\:cm}}

Now,

\Rightarrow\sf{Area\:of\:\triangle ABC=\sqrt{s(s-a)(s-b)(s-c)} }\\\\\\\Rightarrow\sf{Area\:of\:\triangle ABC=\sqrt{16(16-10)(16-10)(16-12)}} \\\\\\\Rightarrow\sf{Area\:of\:\triangle ABC=\sqrt{16(6)(6)(4) } \:cm^{2} }\\\\\\\Rightarrow\sf{Ara\:of\:\triangle ABC=\sqrt{2304} \:cm^{2}} \\\\\\\Rightarrow\sf{\red{Area\:of\:\triangle ABC=48\:cm^{2} }}

∴Area of rhombus = 2(Area of ΔABC)  

Area = 2(48)cm²

Area = 96 cm²

\bf{\boxed{\bf{The\:cost\:of\:painting\::}}}}}

\leadsto\sf{Cost\:of\:painting\:of\:sheet\:of\:1cm^{2} =Rs.5}\\\\\leadsto\sf{Cost\:of\:painting\:of\:sheet\:of\:96cm^{2}=Rs.(5\times 96)=Rs.480}

∴ The both sides is painted = Rs.2(480) = Rs.960.

Attachments:
Answered by Anonymous
148

\Huge{\underline{\underline{\mathfrak{ Solution \colon }}}}

Given, Perimeter of the rhombus =40 cm

All the sides of rhombus are equal hence side = 4 a

Let the diagonal AC =12 cm

 : ⟹ \text{OA } = 6 \text{cm}

 : ⟹ \text{ \ {OB} }^{2}  =  { \text{ AB} }^{2}  -  { \text{ OA}}^{2}

 : ⟹ \text{OB} =  \sqrt{ {10 }^{2} -  {6}^{2}  }

 : ⟹  \sqrt{100 - 36}

 : ⟹ \sqrt{64}

 : ⟹ \: 8 \text{m}

Area of sheet

 : ⟹ \frac{1}{2}  \times  \text{AC} \times  \text{BC}

 : ⟹  \frac{1}{2} \times 12 \times 16

 : ⟹96 \text{ {m}}^{2}

Cost of painting on both side at the rate of 5 per cm

⟹ \text{Rs}.( 5 \times 2 \times 96)

  :  ⟹\text{Rs}.960

Similar questions