Math, asked by Celestia01, 2 months ago

32. Find the area of the hexagon
15cm
4 cm​​

Answers

Answered by adityapalaria
5

Answer:

A₀ = a * h / 2 = a * √3/2 * a / 2 = √3/4 * a². Where A₀ means the area of each of the equilateral triangles in which we have divided the hexagon. After multiplying this area by six (because we have 6 triangles), we get the hexagon area formula: A = 6 * A₀ = 6 * √3/4 * a²

Step-by-step explanation:

Answered by MiraculousBabe
31

Answer:

Answer:

 \large \underline{\underline{\bf \pmb{Given}}}

  • ★ 15 cm
  • ★ 4 cm

\large \underline{\underline{\bf \pmb{To \: Find }}}

  • ★ Area of Hexagon

\large \underline{\underline{\bf \pmb{Using \:  Formula }}}

 \circ\underline{\boxed{\sf{Area  \: of \:  Hexagon =  \dfrac{ 3\sqrt{3} }{2}  \times  {a}^{2} }}}

\large \underline{\underline{\bf \pmb{Solution}}}

1) 15 cm

 {\implies{\sf{Area  \: of \:  Hexagon =  \dfrac{ 3\sqrt{3} }{2}  \times  {15}^{2} }}}

{\implies{\sf{Area  \: of \:  Hexagon =  \dfrac{ 3\sqrt{3} }{2}  \times 15 \times 15 }}}

{\implies{\sf{Area  \: of \:  Hexagon =  \dfrac{ 3\sqrt{3} }{ \cancel{2}}  \times  \cancel{ 225}}}}

{\implies{\sf{Area  \: of \:  Hexagon = 3 \sqrt{3} \times {112.5}}}}

{\implies{\sf{Area  \: of \:  Hexagon = 337.5\sqrt{3}}}}

 \bigstar \underline{\boxed{\sf \pink{\pmb{Area  \: of \:  Hexagon = 337.5\sqrt{3}}}}}

\begin{gathered} \\ \end{gathered}

2) 4cm

 {\implies{\sf{Area  \: of \:  Hexagon =  \dfrac{ 3\sqrt{3} }{2}  \times  {4}^{2} }}}

{\implies{\sf{Area  \: of \:  Hexagon =  \dfrac{ 3\sqrt{3} }{2}  \times 4 \times 4}}}

{\implies{\sf{Area  \: of \:  Hexagon =  \dfrac{ 3\sqrt{3} }{ \cancel{2}}  \times  \cancel{16}}}}

{\implies{\sf{Area  \: of \:  Hexagon = 3 \sqrt{3} \times {8}}}}

{\implies{\sf{Area  \: of \:  Hexagon = 24\sqrt{3}}}}

 \bigstar \underline{\boxed{\sf \pink{\pmb{Area  \: of \:  Hexagon = 24\sqrt{3}}}}}

Similar questions