32, Find the coordinates of the point which is equidistant from the three vertices
A (2x, 0), O (0,0) and B (0,2y) of A AOB.
Answers
Answered by
14
Answer:
( x,y)
Step-by-step explanation:
let the point be ( a,b)
(a-2x)² + b² = a² + (b-2y)² = a²+b²
a²+b² + 4x² - 4ax = a²+b² + 4y² - 4by ,
x² - ax + a²/4 +b²/4 = y² - 4by a²/4 +b²/4
(x-a/2)² + b²/4 = (y-b/2)² + a²/4
a²+b² = (2x-a)² + b², 2x-a = ±a
2x-a = ±a
2y-b = ±b
±a + a = 2x
±b + b = 2y
therefore
a = x , b = y
( a,b) = ( x,y)
Similar questions