32. In the given figure, the side PQ of a right triangle APQR where OP = 6 cm, OR = 8 cm and QR - 26 cm, is : (a) 21 cm (b) 23 cm (c) 24 cm (d) 36 cm
Answers
Answer:
answer is 26 cm
Step-by-step explanation:
I hope its help u
ΔPQR is right Angled Δ with ∠POR=90∘
ΔPQR is right Angled Δ with ∠POR=90∘∴(PO)2+(OR)2=PR
ΔPQR is right Angled Δ with ∠POR=90∘∴(PO)2+(OR)2=PR⇒PR=62+82=100
ΔPQR is right Angled Δ with ∠POR=90∘∴(PO)2+(OR)2=PR⇒PR=62+82=100=10cm
ΔPQR is right Angled Δ with ∠POR=90∘∴(PO)2+(OR)2=PR⇒PR=62+82=100=10cmand
ΔPQR is right Angled Δ with ∠POR=90∘∴(PO)2+(OR)2=PR⇒PR=62+82=100=10cmand Δ PQR is right Angled Δ with
ΔPQR is right Angled Δ with ∠POR=90∘∴(PO)2+(OR)2=PR⇒PR=62+82=100=10cmand Δ PQR is right Angled Δ with ∠QPR=90∘
ΔPQR is right Angled Δ with ∠POR=90∘∴(PO)2+(OR)2=PR⇒PR=62+82=100=10cmand Δ PQR is right Angled Δ with ∠QPR=90∘∴(PQ)2+(PR)2=(QR)2
ΔPQR is right Angled Δ with ∠POR=90∘∴(PO)2+(OR)2=PR⇒PR=62+82=100=10cmand Δ PQR is right Angled Δ with ∠QPR=90∘∴(PQ)2+(PR)2=(QR)2⇒PQ=(26)2−(10)2
ΔPQR is right Angled Δ with ∠POR=90∘∴(PO)2+(OR)2=PR⇒PR=62+82=100=10cmand Δ PQR is right Angled Δ with ∠QPR=90∘∴(PQ)2+(PR)2=(QR)2⇒PQ=(26)2−(10)2=676−100
ΔPQR is right Angled Δ with ∠POR=90∘∴(PO)2+(OR)2=PR⇒PR=62+82=100=10cmand Δ PQR is right Angled Δ with ∠QPR=90∘∴(PQ)2+(PR)2=(QR)2⇒PQ=(26)2−(10)2=676−100=576
ΔPQR is right Angled Δ with ∠POR=90∘∴(PO)2+(OR)2=PR⇒PR=62+82=100=10cmand Δ PQR is right Angled Δ with ∠QPR=90∘∴(PQ)2+(PR)2=(QR)2⇒PQ=(26)2−(10)2=676−100=57624cm
ΔPQR is right Angled Δ with ∠POR=90∘∴(PO)2+(OR)2=PR⇒PR=62+82=100=10cmand Δ PQR is right Angled Δ with ∠QPR=90∘∴(PQ)2+(PR)2=(QR)2⇒PQ=(26)2−(10)2=676−100=57624cm∴
ΔPQR is right Angled Δ with ∠POR=90∘∴(PO)2+(OR)2=PR⇒PR=62+82=100=10cmand Δ PQR is right Angled Δ with ∠QPR=90∘∴(PQ)2+(PR)2=(QR)2⇒PQ=(26)2−(10)2=676−100=57624cm∴ Ar of ΔPQR=21base×height
ΔPQR is right Angled Δ with ∠POR=90∘∴(PO)2+(OR)2=PR⇒PR=62+82=100=10cmand Δ PQR is right Angled Δ with ∠QPR=90∘∴(PQ)2+(PR)2=(QR)2⇒PQ=(26)2−(10)2=676−100=57624cm∴ Ar of ΔPQR=21base×height=21×10×24
ΔPQR is right Angled Δ with ∠POR=90∘∴(PO)2+(OR)2=PR⇒PR=62+82=100=10cmand Δ PQR is right Angled Δ with ∠QPR=90∘∴(PQ)2+(PR)2=(QR)2⇒PQ=(26)2−(10)2=676−100=57624cm∴ Ar of ΔPQR=21base×height=21×10×24=120cm2