Math, asked by royalankush06, 2 months ago

32. Prove that: (Cota - Coseca)2 = 1+cosa÷1+cosa​

Answers

Answered by adamop093
1

here is your answer ☺️☺️

Step-by-step explanation:

(cotA−cscA)2=1−cosA 1+cosA

cot2A−2cotAcscA+csc2x =1−cosA 1+cosA

cos2A sin2A−2cosA sin2A+1 sin2A =1−cosA

cos2A−2cosA+1 sin2A=1−cosA 1+cosA

(1−cosA)(1−cosA) (1+cosA)(1−cosA)=

1−cosA 1+cosA

cos2A−2cosA+1 1−cos2A=1−cosA 1+cosA

1−cosA 1+cosA=1−cosA 1+cosA

Similar questions