32. Show that:
2(sin + cos e) - 3(sin e + cose) + 1 = 0
Answers
Answered by
0
Answer:
LHS=2(sin
6
θ+cos
6
θ)−3(sin
4
θ+cos
4
θ)+1
=2{(sin
2
θ+cos
2
θ)
3
−3sin
2
θcos
2
θ(sin
2
θ+cos
2
θ)}−3(sin
2
θ+cos
2
θ)
2
−2(sin
2
θcos
2
θ)}+1
We know, [sin²x+cos²x=1]
=2{1−3sin
2
θcos
2
θ}−3{1−2sin
2
θcos
2
θ}+1
=2−6sin
2
θcos
2
θ−3+6sin
2
θcos
2
θ+1
=0
=RHS
Similar questions