32. Show that A(-1,0), B (3, 1), C(2, 2) and D(-2, 1) are the vertices of a parallelogram
ABCD.
Answers
Step-by-step explanation:
HelloflFriend
\bf{Given}Given
Let the coordinates of
A = (X₁, Y₁)
B = (X₂, Y₂)
C = (X₃, Y₃)
D = (X₄ , Y₄)
\green{By \: distance \: formula : }Bydistanceformula:
AB \: = \sqrt{(X2 - X1) + (Y2 - Y1)}AB=(X2−X1)+(Y2−Y1)
AB = \sqrt{(3 - ( -1 ) { }^{2} + (1 - 0) {}^{2} }AB=(3−(−1)2+(1−0)2
AB= \sqrt{(3 + 1) {}^{2} + (1) {}^{2} }AB=(3+1)2+(1)2
AB \: = \sqrt{(4) {}^{2} + 1}AB=(4)2+1
AB = \sqrt{16 + 1} = \sqrt{17}AB=16+1=17
Now,
BC = \sqrt{(X3 - X2) {}^{2} + (Y3 - Y2) {}^{2} }BC=(X3−X2)2+(Y3−Y2)2
BC = \sqrt{(2 - 3) {}^{2} + (2 - 1) {}^{2} }BC=(2−3)2+(2−1)2
BC = \sqrt{( - 1) {}^{2} + (1) {}^{2} }BC=(−1)2+(1)2
BC = \sqrt{1 + 1} = \sqrt{2}BC=1+1=2
Now,
CD = \sqrt{(X4 - X3) {}^{2} + (Y4 - Y3) {}^{2} }CD=(X4−X3)2+(Y4−Y3)2
CR = \sqrt{( - 2 - 2) {}^{2} + (1 - 2) {}^{2} }CR=(−2−2)2+(1−2)2
CD = \sqrt{( - 4) { }^{2} + ( - 1) {}^{2} }CD=(−4)2+(−1)2
CD = \sqrt{16 + 1} = \sqrt{17}CD=16+1=17
Now,
AD = \sqrt{(X4 - X1) {}^{2} + (Y4 - Y1) {}^{2} }AD=(X4−X1)2+(Y4−Y1)2
AD = \sqrt{ ( - 2 - (1) {}^{2} + (1 - 0) {}^{2} }AD=(−2−(1)2+(1−0)2
AD= \sqrt{( - 2 + 1) {}^{2} + (1) {}^{2} }AD=(−2+1)2+(1)2
AD = \sqrt{ (- 1) {}^{2} + 1}AD=(−1)2+1
AD = \sqrt{1 + 1} = \sqrt{2}AD=1+1=2
Here, AB = CD
and
BC = AD
Therefore, by the property of parallelogram the given vertices are of parallelogram .
\huge \boxed { \boxed{thans}}thans
Here is your answer user.