Math, asked by PATTSEHEADSHOT007, 10 months ago

32ab^4-162a
Exam Pls help​

Answers

Answered by harendrachoubay
10

The factorisation of 32ab^4 - 162a is equa to 2a(4b^2+9)(2b+3)(2b-3).

Step-by-step explanation:

We have,

32ab^4 - 162a

To find, the factorisation of 32ab^4 - 162a = ?

32ab^4 - 162a

Taking '2a' as common, we get

= 2a(16b^4 - 81)

= 2a[(2b)^2)^2 - (3^2)^2]

Using the algebraic identity,

a^{2}-b^{2}=(a+b)(a-b)

=2a((2b)^2+3^2)((2b)^2-3^2)

=2a(4b^2+9)((2b)^2-3^2)

Again, using the algebraic identity,

a^{2}-b^{2}=(a+b)(a-b)

=2a(4b^2+9)(2b+3)(2b-3)

∴ The factorisation of 32ab^4 - 162a = 2a(4b^2+9)(2b+3)(2b-3)

Thus, the factorisation of 32ab^4 - 162a is equa to 2a(4b^2+9)(2b+3)(2b-3).

Answered by vanduvsp
0

ANSWER:

32ab⁴-162a

2a(16b⁴-81)

2a[(4b)²-(9)²]

2a[(4b+9)(4b-9)]

2a[(4b+9)((2)²-(9)²)

2a[(4b+9)((2+9)(2-9)]

HOPE IT HELPS☺️

Similar questions