Math, asked by arunsaimncl, 6 months ago

(32C0)^2-(32C1)^2+(32C2)^2-..........(32C32)^2=

Answers

Answered by amaan120025
1

Answer:

263-1/2(64C32)

ekkejwjejeie

Answered by pulakmath007
22

SOLUTION

TO DETERMINE

\displaystyle  \sf{  \bigg({{}^{32}C_0 }\bigg)^{2} -   \bigg({{}^{32}C_1 }} \bigg)^{2} +  \bigg({{}^{32}C_2 } \bigg)^{2} + ... + \bigg({{}^{32}C_{32} } \bigg)^{2}

EVALUATION

\displaystyle  \sf{  \bigg({{}^{32}C_0 }\bigg)^{2} -   \bigg({{}^{32}C_1 }} \bigg)^{2} +  \bigg({{}^{32}C_2 } \bigg)^{2} + ... + \bigg({{}^{32}C_{32} } \bigg)^{2}

 = \displaystyle \sf{ \sum\limits_{r=0}^{n}{( - 1)}^{r}  \bigg({{}^{32}C_{r} } \bigg)^{2}}

 = \displaystyle \sf{ \sum\limits_{r=0}^{n} {( - 1)}^{r}  \bigg({{}^{32}C_{r} } \bigg)}\bigg({{}^{32}C_{r} } \bigg)

 = \displaystyle \sf{ \sum\limits_{r=0}^{n} {( - 1)}^{r}  \bigg({{}^{32}C_{r} } \bigg)}\bigg({{}^{32}C_{32 - r} } \bigg) \:  \because  \{ {}^{n}C_{r}  = {}^{n}C_{n - r}  \}

Now the suffixes are r and 32 - r

So the sum of the suffixes = 32 - r + r = 32

Hence the given expression

 =  \sf{Coefficient  \: of  \:  {x}^{32}  \: in  \:  {(1  -  x)}^{32} {(1 +  x)}^{32}  }

 =  \sf{Coefficient  \: of  \:  {x}^{32}  \: in  \:  {(1  - {x}^{2} )}^{32} }

 =  \sf{Coefficient  \: of  \:  {( {x}^{2} )}^{16}  \: in  \:  {(1  - {x}^{2} )}^{32} }

 = \displaystyle  \sf{ {{}^{32}C_{16}}}

FINAL ANSWER

\displaystyle  \sf{  \bigg({{}^{32}C_0 }\bigg)^{2} -   \bigg({{}^{32}C_1 }} \bigg)^{2} +  \bigg({{}^{32}C_2 } \bigg)^{2} + ... + \bigg({{}^{32}C_{32} } \bigg)^{2} = \displaystyle  \sf{ {{}^{32}C_{16}}}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

The value of 20 sigma 50-r C6 is equal to

https://brainly.in/question/25207335

Similar questions