Math, asked by kisalay13, 3 months ago

33. A flagstaff stands on a tower. At a point distance 60 m from the base of the tower
the top of the flagstaff makes an angle of 60°from the base and the tower makes an angle of 30°
at that very point. Find the height of the flagstaff.​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Let assume that

  • Height of tower, AC be 'x' meter

and

  • Height of flagstaff, CD be 'y' meter.

It is given that,

  • A point B is 60 meter away from the base of the tower, A.

Now, we have

  • AB = 60 m

  • AC = x m

  • CD = y m

  • ∠CBA = 30°

  • ∠DBA = 60°

Consider,

\rm :\longmapsto\:In \:  \triangle  \: ABC

\rm :\longmapsto\:tan \: 30 \degree \: = \dfrac{AC}{AB}

\rm :\longmapsto\:\dfrac{1}{ \sqrt{3} }  = \dfrac{x}{60}

\rm :\implies\:x = \dfrac{60}{ \sqrt{3} }

\rm :\longmapsto\:x = \dfrac{60}{ \sqrt{3} }   \times \dfrac{ \sqrt{3} }{ \sqrt{3} }

\rm :\longmapsto\:x = \dfrac{60 \sqrt{3} }{3}

\bf\implies \:x = 20 \sqrt{3}  \: m

Now,

\rm :\longmapsto\:In  \: \triangle \:  ADB

\rm :\longmapsto\:tan60\degree \: = \dfrac{AD}{AB}

\rm :\longmapsto\: \sqrt{ 3}  = \dfrac{x + y}{60}

\rm :\longmapsto\:60 \sqrt{3}  = 20 \sqrt{3}  + y

\rm :\longmapsto\:y = 60 \sqrt{3}  - 20 \sqrt{3}

\bf\implies \:y = 40 \sqrt{3}  \: m

\bf\implies \:Height \:  of \: flagstaff = 40 \sqrt{3}  \: meter.

Additional Information :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Similar questions