Physics, asked by narendar123456789, 8 months ago

33. A particle starting from rest moves vertically upward from the surface of earth
under an external (variable) force F = (2 - az) mg k. His maximum height reached
by particle. (Vertical is along Z-axis)
4​

Answers

Answered by nirman95
0

Given:

A particle starting from rest moves vertically upward from the surface of earth under an external (variable) force F = (2 - az).

To find:

Max height reached by the particle.

Calculation:

 \therefore \: F = 2 - az

 =  > m(acc.) = 2 - az

 =  > m \bigg \{v \times \dfrac{dv}{dz}   \bigg \}= 2 - az

 =  > m \bigg \{v \times dv  \bigg \}= (2 - az) \: dz

Integrating on both sides:

 \displaystyle =  > \int m \bigg \{v \times dv  \bigg \}=  \int(2 - az) \: dz

 \displaystyle =  > m\int v  dv =  \int(2 - az) \: dz

Putting limits :

 \displaystyle =  > m\int_{0}^{0} v  dv =  \int_{0}^{z} (2 - az) \: dz

 =  > \:  0 = 2z -  \dfrac{a {z}^{2} }{2}

 =  > \:  0 = 2 -  \dfrac{a z }{2}

 =  > \:   \dfrac{a z }{2}  = 2

 =  > \:   az = 4

 =  >  \: z =  \dfrac{4}{a}

So, final answer is :

 \boxed{ \sf{ \red{ \large{ \: z =  \dfrac{4}{a} }}}}

Answered by Lueenu22
0

Explanation:

Given:

A particle starting from rest moves vertically upward from the surface of earth under an external (variable) force F = (2 - az).

To find:

Max height reached by the particle.

Calculation:

\therefore \: F = 2 - az∴F=2−az

= > m(acc.) = 2 - az=>m(acc.)=2−az

= > m \bigg \{v \times \dfrac{dv}{dz} \bigg \}= 2 - az=>m{v×

dz

dv

}=2−az

= > m \bigg \{v \times dv \bigg \}= (2 - az) \: dz=>m{v×dv}=(2−az)dz

Integrating on both sides:

\displaystyle = > \int m \bigg \{v \times dv \bigg \}= \int(2 - az) \: dz=>∫m{v×dv}=∫(2−az)dz

\displaystyle = > m\int v dv = \int(2 - az) \: dz=>m∫vdv=∫(2−az)dz

Putting limits :

\displaystyle = > m\int_{0}^{0} v dv = \int_{0}^{z} (2 - az) \: dz=>m∫

0

0

vdv=∫

0

z

(2−az)dz

= > \: 0 = 2z - \dfrac{a {z}^{2} }{2}=>0=2z−

2

az

2

= > \: 0 = 2 - \dfrac{a z }{2}=>0=2−

2

az

= > \: \dfrac{a z }{2} = 2=>

2

az

=2

= > \: az = 4=>az=4

= > \: z = \dfrac{4}{a}=>z=

a

4

So, final answer is :

\boxed{ \sf{ \red{ \large{ \: z = \dfrac{4}{a} }}}}

z=

a

4

.....

Similar questions