33. In fig 6.42 if lines PQ and RS intersect at point T, such that ∠PRT = 40°, ∠ RPT = 95° and∠ TSQ = 75°, i) ∠ SQT. =------- ii) ∠ STQ=---------
Captionless Image
Answers
Answered by
0
Answer:
Vertically opposite angles:
When two line intersect each other at a point then there are two pairs of vertically opposite angles.
_____________________________________________________________
Solution:
Given: ∠PRT= 40°, ∠RPT=95°, ∠TSQ=75°
In △PRT,
∠PTR+∠PRT+∠RPT=180°
[sum of interior angles of a triangle is 180°].
⇒∠PTR+40∘+95∘=180∘
⇒∠PTR+135∘=180∘ ⇒∠PTR=180∘−135∘
⇒∠PTR=45∘
⇒∠QTR=∠PTR=45∘
(vertically opposite angles)
In △TSQ,
∠QTS+∠TSQ+∠SQT=180∘
[sum of interior angles of a triangle is 180∘].
45∘+75∘+∠SQT=180∘ ⇒120∘+∠SQT=180∘
⇒∠SQT=180∘−120∘
⇒∠SQT=60∘
Hence, ∠SQT=60∘
Similar questions