Math, asked by shubhamdata7, 11 months ago


33. Prove that (cot A + sec B)2 – (tan B - cosec A)2 = 2(cot A. sec B + tan B. cosec A)

Attachments:

Answers

Answered by ss141309
2

Step-by-step explanation:

∵  (a+b)^2=(a^2+b^2+2ab)  and  (a-b)^2=(a^2+b^2-2ab)

(\cot A + \sec B)^2-(\tan B - \csc A)^2

= (\cot^2A+sec^2B+2\cot A\sec B)-(\tan^2B+\csc^2A-2\tan B\csc A)

= \cot^2A-\csc^2A+\sec^2B-\tan^2B+2(\cot A\sec B+\tan B \csc A)

\cot\theta=\frac{\cos\theta}{\sin\theta}  , \csc\theta=\frac{1}{\sin\theta} , \sec\theta=\frac{1}{\cos\theta}  and \tan\theta=\frac{sin\theta}{\cos\theta}

\cot^2A-\csc^2A+\sec^2B-\tan^2B+2(\cot A\sec B+\tan B \csc A)

=  \frac{\cos^2A}{\sin^2A} -\frac{1}{\sin^2A} +\frac{1}{\cos^2B} -\frac{sin^2B}{\cos^2B} +2(\cot A\sec B+\tan B \csc A)

= \frac{\cos^2A-1}{\sin^2A} +\frac{1-sin^2B}{\cos^2B} +2(\cot A\sec B+\tan B \csc A)

= -\frac{1-\cos^2A}{\sin^2A} +\frac{1-sin^2B}{\cos^2B} +2(\cot A\sec B+\tan B \csc A)

\sin^2\theta+\cos^2\theta=1

\sin^2\theta=1-\cos^2\theta  and  \cos^2\theta=1-\sin^2\theta

-\frac{1-\cos^2A}{\sin^2A} +\frac{1-sin^2B}{\cos^2B} +2(\cot A\sec B+\tan B \csc A)

= -\frac{sin^2A}{\sin^2A} +\frac{\cos^2B}{\cos^2B} +2(\cot A\sec B+\tan B \csc A)

= -1+1 +2(\cot A\sec B+\tan B \csc A)

= 2(\cot A\sec B+\tan B \csc A)              Hence Proved

Similar questions