33. Prove that, for a triangle ABC,
if cot A + cot B = 2cotC, then AC2 + BC2 = 2AB2.
Answers
Answered by
0
Answer:
In any triangle
cotA=(b^2+c^2-a^2)÷(4×area)
cotB=(c^2+a^2-b^2)÷(4×area)
cotC=(a^2+b^2-c^2)÷(4×area)
Substitute in ur equation
cotA+cotB=2cotC
U will get 2c^2=b^2+a^2
2(AB)^2=AC^2+BC^2
Similar questions