33. Prove that.
(sin A + cosec A)2 + (cos A + sec A) = 7 + tan- A + cot? A
Answers
Answered by
1
(sinA+cosecA)²+(cosA+secA)²
=sin²A+cosec²A+2sinAcosecA+cos²A+sec²A+2cosAsecA
=sin²A+cos²A+cosec²A+sec²A+2sinA×1/sinA+2cosA×1/cosA
=1+cosec²A+sec²A+2+2
=5+(1+cot²A)+(1+tan²A)
=7+tan²A+cot²A
Answered by
0
( sinA + 1/sinA )²+ ( cosA + 1/cosA )²
= sin²A + 2 + 1/sin²A + cos²A + 2 + 1/cos²A
As sin²A + cos²A = 1
= 1 + 2 + 2 + cosec²A + sec²
= 5 + ( 1 + cot²A ) + ( 1 + tan²A )
= 5 + 1 + 1 + cot²A + tan²A
= 7 + tan²A + cot²A
Thus proved.
Thank u
Hope this helps you
Please mark as brainliest if you think it is so
@spyder
Similar questions