33. Prove that
(sin A + cosec A)? + (cos A + sec A)? = 7 + tan? A + cot? A
Answers
Answered by
9
Correct Question
To prove
(sinA + cosecA)² + (cosA + secA)² = 7 + tan²A + cot²A
Solution
Taking LHS,
(sinA + cosecA)² + (cosA + secA)²
→ sin²A + cosec²A + 2sinAcosecA + cos²A + sec²A + 2cosAsecA
(using, (a + b)² = a² + b² + 2ab)
→ (sin²A + cos²A) + cosec²A + sec²A + 2 + 2
(using, sinAcosecA = 1 and cosAsecA = 1)
→ 1 + cosec²A + sec²A + 4
(using, cos²A + sin²A = 1)
Now, we know that, cosec²A = 1 + cot²A and sec²A = 1 + tan²A
so,
→ 1 + (1 + cot²A) + (1 + tan²A) + 4
→ 7 + tan²A + cot²A
= RHS
Hence proved.
Similar questions