33. Prove that (Sin A + Cosec A) + (Cos A +Sec A) = 7 + tanA+ Cot A
Answers
Question:
Prove that (sin A + cosec A)² + (cos A + sec A)² = 7 + tan² A + cot² A
Answer:
Step-by-step explanation:
Given:
- (sin A + cosec A)² + (cos A + sec A)² = 7 + tan² A + cot² A
To Prove:
LHS = RHS
Identities used:
(a + b)² = a² + 2ab + b²
sin A × cosec A = 1
cos A × sec A = 1
sin² A + cos² A = 1
sec² A = 1 + tan² A
cosec² A = 1 + cot² A
Proof:
Taking the LHS of the equation,
LHS = (sin A + cosec A)² + (cos A + sec A)²
Expanding by applying the identities
⇒ sin² A + 2sin A cosec A + cosec² A + cos²A + 2cos A secA + sec² A
Again using suitable identities,
⇒ sin² A + 2 × 1 + cosec² A + cos² A + 2 × 1 + sec² A
⇒ 2 + 2 + sin² A + cos²A + cosec² A + sec² A
⇒ 4 + 1 + cosec² A + sec² A
⇒ 5 + cosec² A + sec² A
Now we know that,
sec² A = 1 + tan² A
cosec² A = 1 + cot² A
Hence,
⇒ 5 + 1 + cot² A + 1 + tan² A
⇒ 7 + tan² A + cot² A
= RHS
Hence proved.