33x + 32y = 34 ; 32x + 33y =31
Answers
Answered by
41
Solution :
_____________________________________________________________
Given :
33x + 32y = 34 ....(i)
32x + 33y = 31 .....(ii)
_____________________________________________________________
To Find :
Values of x & y
_____________________________________________________________
⇒ By adding both the equation,
We get,.
⇒ (33x + 32y) + (32x + 33y) = 34 + 31
⇒ 33x + 32x + 32 y + 33y = 65
⇒ 65x + 65y = 65
⇒ 65(x + y) = 65(1)
⇒ x + y = 1 ....(iii)
__________________________
By subtracting (ii) from (i),
We get,.
⇒ (33x + 32y) - (32x + 33y) = 34 - 31
⇒ 33x - 32x + 32y - 33y = 3
⇒ x - y = 3 ....(iv)
______________________________
By adding (iii) & (iv),
We get,.
⇒ (x + y) + (x - y) = 1 + 3
⇒ x + y + x - y = 4
⇒ 2x = 4
⇒ x = 2
_____________
By substituting the value of x in (iii),
We get,
⇒ x + y = 1
⇒ 2 + y = 1
⇒ y = 1 - 2
⇒ y = -1
_____________________________________________________________
Hope it Helps !!
⇒ Mark as Brainliest,.
_____________________________________________________________
Given :
33x + 32y = 34 ....(i)
32x + 33y = 31 .....(ii)
_____________________________________________________________
To Find :
Values of x & y
_____________________________________________________________
⇒ By adding both the equation,
We get,.
⇒ (33x + 32y) + (32x + 33y) = 34 + 31
⇒ 33x + 32x + 32 y + 33y = 65
⇒ 65x + 65y = 65
⇒ 65(x + y) = 65(1)
⇒ x + y = 1 ....(iii)
__________________________
By subtracting (ii) from (i),
We get,.
⇒ (33x + 32y) - (32x + 33y) = 34 - 31
⇒ 33x - 32x + 32y - 33y = 3
⇒ x - y = 3 ....(iv)
______________________________
By adding (iii) & (iv),
We get,.
⇒ (x + y) + (x - y) = 1 + 3
⇒ x + y + x - y = 4
⇒ 2x = 4
⇒ x = 2
_____________
By substituting the value of x in (iii),
We get,
⇒ x + y = 1
⇒ 2 + y = 1
⇒ y = 1 - 2
⇒ y = -1
_____________________________________________________________
Hope it Helps !!
⇒ Mark as Brainliest,.
Answered by
9
33x + 32y = 34 |→*33
32x + 33y = 31 |→*32
1089x + 1056y = 1122 -----[1]
1024x + 1056y = 992 ------[2]
subtracting eq. [1] - [2]
1089x + 1056y = 1122
-1024x - 1056y = -992
--------------------------------
65x - 0 = 130
x=130/65
x=2
32x + 33y = 31 |→*32
1089x + 1056y = 1122 -----[1]
1024x + 1056y = 992 ------[2]
subtracting eq. [1] - [2]
1089x + 1056y = 1122
-1024x - 1056y = -992
--------------------------------
65x - 0 = 130
x=130/65
x=2
Similar questions