34+32+30+... +10 find the sum of A.P
Attachments:
Answers
Answered by
1
Step-by-step explanation:
This is the perfect answer.
Attachments:
Answered by
1
EXPLANATION.
Sum of arithmetic progression.
⇒ 34 + 32 + 30 + . . . . . + 10.
As we know that,
General term of an ap.
⇒ Aₙ = a + (n - 1)d.
Using this formula in the equation, we get.
First term = a = 34.
Common difference = d = b - a = 32 - 34 = - 2.
⇒ aₙ = 10.
Put the values in the equation, we get.
⇒ 10 = 34 + (n - 1)(-2).
⇒ 10 = 34 + (- 2n + 2).
⇒ 10 = 34 - 2n + 2.
⇒ 10 = 36 - 2n.
⇒ 10 - 36 = - 2n.
⇒ - 26 = - 2n.
⇒ n = 13.
As we know that,
Sum of nth term of an ap.
⇒ Sₙ = n/2[2a + (n - 1)d].
Put the values in the equation, we get.
⇒ Sₙ = 13/2[2 x 34 + (13 - 1)(-2)].
⇒ Sₙ = 13/2[68 + (12)(-2)].
⇒ Sₙ = 13/2[68 - 24].
⇒ Sₙ = 13/2[44].
⇒ Sₙ = 13 x 22.
⇒ Sₙ = 286.
Sum of an ap = 286.
Similar questions