Math, asked by arjunprasadsingh0057, 2 months ago

34. A farmer connects a pipe of internal diameter 20 cm from a canal into a cylindrical tank in
her field, which is 10 m in diameter and 2 m deep. If water flows through the pipe at the rate
of 3 km/h, in how much time will the tank be filled?​

Answers

Answered by Anonymous
1

 \red{ \frak {Given}}\begin{cases} \sf{Internal\:diameter\:of\:a\:pipe\:= \frak{20\:cm}} \\ \\ \sf{Radius\:of\:Pipe\:=\:10\:cm\:= \frak{\dfrac{1}{10}}\:\frak m} \\  \\\sf{Diameter\:of\:cylindrical\:tank\:= \frak{10\:m}\:;\:r\:=\frak{5\:m}} \\ \\\sf{Depth\:of\:cylindrical\:tank\:= \frak{2\:m}}\\ \\ \sf{Speed\:of\:water\:=\frak{3\:km/hr}}\end {cases}

{ }

Need to find : Time required to fill the water tank.

{ }

\:\:\:\:\:\:\:\:━━━━━━━━━━━━━━━━━━━

{ }

We Know,

  • Speed of Water is 3 km/hr.

{ }

\:\:\:\:\:\:\::\:\Longrightarrow\sf\:{\dfrac{3000}{60}}\:m/minute

{ }

\:\:\:\:\:\:\::\:\Longrightarrow\sf\:{50\:m/minute }

{ }

\:\:\:\:\:\:\:\:━━━━━━━━━━━━━━━━━━━

Let time required to fill the tank be n' minutes.

{ }

  • Flowing water in 'n' minutes = Volume of water tank

{ }

\:\::\:\Longrightarrow\sf\:{\pi\:\times{ \bigg(\dfrac{1}{2} \bigg)}^{2}\:\times\:(n\:\times\:50)\:=\:\pi\:\times\:(5)^{2} }\:{\times\:2 }

{ }

\:\:\:\:\:\:\::\:\Longrightarrow\sf\:{\dfrac{1}{100}}\:n\:\times\:50\:=\:50

{ }

\:\:\:\:\:\:\::\:\Longrightarrow\:{\underline{\boxed{\frak{\pink{n\:=\:100\:minutes  }}}}}\:\bigstar

{ }

{ }

\:\therefore\:{\underline{\sf{Time\:required\:to\:fill\:the\:water\:tank\:is\:{\textsf{\textbf{100\:minutes}}}}}}.

{ }

\:\:\:\:\:\:\:\:━━━━━━━━━━━━━━━━━━━

Similar questions